YES We show the termination of the TRS R: first(|0|(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(s(X))) first(X1,X2) -> n__first(X1,X2) from(X) -> n__from(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> first#(X1,X2) p3: activate#(n__from(X)) -> from#(X) and R consists of: r1: first(|0|(),X) -> nil() r2: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r3: from(X) -> cons(X,n__from(s(X))) r4: first(X1,X2) -> n__first(X1,X2) r5: from(X) -> n__from(X) r6: activate(n__first(X1,X2)) -> first(X1,X2) r7: activate(n__from(X)) -> from(X) r8: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> first#(X1,X2) and R consists of: r1: first(|0|(),X) -> nil() r2: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r3: from(X) -> cons(X,n__from(s(X))) r4: first(X1,X2) -> n__first(X1,X2) r5: from(X) -> n__from(X) r6: activate(n__first(X1,X2)) -> first(X1,X2) r7: activate(n__from(X)) -> from(X) r8: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: first#_A(x1,x2) = max{x1 + 8, x2 + 6} s_A(x1) = max{3, x1 + 1} cons_A(x1,x2) = max{x1 + 10, x2 + 5} activate#_A(x1) = max{10, x1 + 5} n__first_A(x1,x2) = max{x1 + 3, x2 + 1} precedence: cons = activate# > first# = n__first > s partial status: pi(first#) = [1] pi(s) = [1] pi(cons) = [2] pi(activate#) = [] pi(n__first) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: first#_A(x1,x2) = x1 + 2 s_A(x1) = x1 cons_A(x1,x2) = x2 activate#_A(x1) = 1 n__first_A(x1,x2) = x1 + 1 precedence: s > first# = activate# > cons > n__first partial status: pi(first#) = [1] pi(s) = [1] pi(cons) = [2] pi(activate#) = [] pi(n__first) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.