YES We show the termination of the TRS R: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) a____(X,nil()) -> mark(X) a____(nil(),X) -> mark(X) a__and(tt(),X) -> mark(X) a__isList(V) -> a__isNeList(V) a__isList(nil()) -> tt() a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) a__isNeList(V) -> a__isQid(V) a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) a__isNePal(V) -> a__isQid(V) a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) a__isPal(V) -> a__isNePal(V) a__isPal(nil()) -> tt() a__isQid(a()) -> tt() a__isQid(e()) -> tt() a__isQid(i()) -> tt() a__isQid(o()) -> tt() a__isQid(u()) -> tt() mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) mark(and(X1,X2)) -> a__and(mark(X1),X2) mark(isList(X)) -> a__isList(X) mark(isNeList(X)) -> a__isNeList(X) mark(isQid(X)) -> a__isQid(X) mark(isNePal(X)) -> a__isNePal(X) mark(isPal(X)) -> a__isPal(X) mark(nil()) -> nil() mark(tt()) -> tt() mark(a()) -> a() mark(e()) -> e() mark(i()) -> i() mark(o()) -> o() mark(u()) -> u() a____(X1,X2) -> __(X1,X2) a__and(X1,X2) -> and(X1,X2) a__isList(X) -> isList(X) a__isNeList(X) -> isNeList(X) a__isQid(X) -> isQid(X) a__isNePal(X) -> isNePal(X) a__isPal(X) -> isPal(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> mark#(X) p3: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p4: a____#(__(X,Y),Z) -> mark#(Y) p5: a____#(__(X,Y),Z) -> mark#(Z) p6: a____#(X,nil()) -> mark#(X) p7: a____#(nil(),X) -> mark#(X) p8: a__and#(tt(),X) -> mark#(X) p9: a__isList#(V) -> a__isNeList#(V) p10: a__isList#(__(V1,V2)) -> a__and#(a__isList(V1),isList(V2)) p11: a__isList#(__(V1,V2)) -> a__isList#(V1) p12: a__isNeList#(V) -> a__isQid#(V) p13: a__isNeList#(__(V1,V2)) -> a__and#(a__isList(V1),isNeList(V2)) p14: a__isNeList#(__(V1,V2)) -> a__isList#(V1) p15: a__isNeList#(__(V1,V2)) -> a__and#(a__isNeList(V1),isList(V2)) p16: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) p17: a__isNePal#(V) -> a__isQid#(V) p18: a__isNePal#(__(I,__(P,I))) -> a__and#(a__isQid(I),isPal(P)) p19: a__isNePal#(__(I,__(P,I))) -> a__isQid#(I) p20: a__isPal#(V) -> a__isNePal#(V) p21: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p22: mark#(__(X1,X2)) -> mark#(X1) p23: mark#(__(X1,X2)) -> mark#(X2) p24: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p25: mark#(and(X1,X2)) -> mark#(X1) p26: mark#(isList(X)) -> a__isList#(X) p27: mark#(isNeList(X)) -> a__isNeList#(X) p28: mark#(isQid(X)) -> a__isQid#(X) p29: mark#(isNePal(X)) -> a__isNePal#(X) p30: mark#(isPal(X)) -> a__isPal#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p13, p14, p15, p16, p18, p20, p21, p22, p23, p24, p25, p26, p27, p29, p30} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(nil(),X) -> mark#(X) p3: mark#(isPal(X)) -> a__isPal#(X) p4: a__isPal#(V) -> a__isNePal#(V) p5: a__isNePal#(__(I,__(P,I))) -> a__and#(a__isQid(I),isPal(P)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(isNePal(X)) -> a__isNePal#(X) p8: mark#(isNeList(X)) -> a__isNeList#(X) p9: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) p10: a__isNeList#(__(V1,V2)) -> a__and#(a__isNeList(V1),isList(V2)) p11: a__isNeList#(__(V1,V2)) -> a__isList#(V1) p12: a__isList#(__(V1,V2)) -> a__isList#(V1) p13: a__isList#(__(V1,V2)) -> a__and#(a__isList(V1),isList(V2)) p14: a__isList#(V) -> a__isNeList#(V) p15: a__isNeList#(__(V1,V2)) -> a__and#(a__isList(V1),isNeList(V2)) p16: mark#(isList(X)) -> a__isList#(X) p17: mark#(and(X1,X2)) -> mark#(X1) p18: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p19: mark#(__(X1,X2)) -> mark#(X2) p20: mark#(__(X1,X2)) -> mark#(X1) p21: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p22: a____#(X,nil()) -> mark#(X) p23: a____#(__(X,Y),Z) -> mark#(Z) p24: a____#(__(X,Y),Z) -> mark#(Y) p25: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p26: a____#(__(X,Y),Z) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a____#_A(x1,x2) = max{x1 + 98, x2 + 7} ___A(x1,x2) = max{183, x1 + 91, x2} mark_A(x1) = max{36, x1} a_____A(x1,x2) = max{183, x1 + 91, x2} nil_A = 89 mark#_A(x1) = x1 + 7 isPal_A(x1) = x1 + 44 a__isPal#_A(x1) = x1 + 43 a__isNePal#_A(x1) = max{42, x1 - 40} a__and#_A(x1,x2) = max{x1 - 33, x2 + 7} a__isQid_A(x1) = 32 tt_A = 31 isNePal_A(x1) = x1 + 37 isNeList_A(x1) = 5 a__isNeList#_A(x1) = 12 a__isNeList_A(x1) = 36 isList_A(x1) = 5 a__isList#_A(x1) = 12 a__isList_A(x1) = 36 and_A(x1,x2) = max{36, x1, x2 + 30} a__and_A(x1,x2) = max{36, x1, x2 + 30} a__isNePal_A(x1) = x1 + 37 a__isPal_A(x1) = x1 + 44 a_A = 32 e_A = 32 i_A = 30 o_A = 30 u_A = 36 isQid_A(x1) = 1 precedence: a__isPal# > a__isNePal# > a > isQid > mark = a____ = a__isNeList = a__isList = a__and = e = o > isNeList = a__isNePal = a__isPal > isNePal > u > nil = a__isQid = isList > __ > a____# = mark# = a__and# = tt = a__isNeList# = a__isList# = i > and > isPal partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(nil) = [] pi(mark#) = [] pi(isPal) = [] pi(a__isPal#) = [] pi(a__isNePal#) = [] pi(a__and#) = [] pi(a__isQid) = [] pi(tt) = [] pi(isNePal) = [] pi(isNeList) = [] pi(a__isNeList#) = [] pi(a__isNeList) = [] pi(isList) = [] pi(a__isList#) = [] pi(a__isList) = [] pi(and) = [] pi(a__and) = [] pi(a__isNePal) = [1] pi(a__isPal) = [1] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isQid) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: a____#_A(x1,x2) = 27 ___A(x1,x2) = 11 mark_A(x1) = 32 a_____A(x1,x2) = 32 nil_A = 31 mark#_A(x1) = 27 isPal_A(x1) = 10 a__isPal#_A(x1) = 27 a__isNePal#_A(x1) = 33 a__and#_A(x1,x2) = 27 a__isQid_A(x1) = 38 tt_A = 30 isNePal_A(x1) = 30 isNeList_A(x1) = 28 a__isNeList#_A(x1) = 27 a__isNeList_A(x1) = 32 isList_A(x1) = 33 a__isList#_A(x1) = 27 a__isList_A(x1) = 32 and_A(x1,x2) = 24 a__and_A(x1,x2) = 32 a__isNePal_A(x1) = 32 a__isPal_A(x1) = 32 a_A = 33 e_A = 33 i_A = 33 o_A = 0 u_A = 0 isQid_A(x1) = 1 precedence: i = o > isPal > mark = a____ = a__isNeList = a__isList = a__and = a__isNePal = a__isPal > isList > a____# = mark# = a__and# = a__isNeList# = a__isList# > u > __ = a__isNePal# > isNeList > a__isPal# > isNePal > a__isQid > e = isQid > nil > tt = and = a partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(nil) = [] pi(mark#) = [] pi(isPal) = [] pi(a__isPal#) = [] pi(a__isNePal#) = [] pi(a__and#) = [] pi(a__isQid) = [] pi(tt) = [] pi(isNePal) = [] pi(isNeList) = [] pi(a__isNeList#) = [] pi(a__isNeList) = [] pi(isList) = [] pi(a__isList#) = [] pi(a__isList) = [] pi(and) = [] pi(a__and) = [] pi(a__isNePal) = [] pi(a__isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isQid) = [] The next rules are strictly ordered: p3, p4, p5, p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(nil(),X) -> mark#(X) p3: a__and#(tt(),X) -> mark#(X) p4: mark#(isNeList(X)) -> a__isNeList#(X) p5: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) p6: a__isNeList#(__(V1,V2)) -> a__and#(a__isNeList(V1),isList(V2)) p7: a__isNeList#(__(V1,V2)) -> a__isList#(V1) p8: a__isList#(__(V1,V2)) -> a__isList#(V1) p9: a__isList#(__(V1,V2)) -> a__and#(a__isList(V1),isList(V2)) p10: a__isList#(V) -> a__isNeList#(V) p11: a__isNeList#(__(V1,V2)) -> a__and#(a__isList(V1),isNeList(V2)) p12: mark#(isList(X)) -> a__isList#(X) p13: mark#(and(X1,X2)) -> mark#(X1) p14: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p15: mark#(__(X1,X2)) -> mark#(X2) p16: mark#(__(X1,X2)) -> mark#(X1) p17: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p18: a____#(X,nil()) -> mark#(X) p19: a____#(__(X,Y),Z) -> mark#(Z) p20: a____#(__(X,Y),Z) -> mark#(Y) p21: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p22: a____#(__(X,Y),Z) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> mark#(X) p3: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p4: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p5: a____#(__(X,Y),Z) -> mark#(Y) p6: mark#(__(X1,X2)) -> mark#(X1) p7: mark#(__(X1,X2)) -> mark#(X2) p8: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p9: a__and#(tt(),X) -> mark#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(isList(X)) -> a__isList#(X) p12: a__isList#(V) -> a__isNeList#(V) p13: a__isNeList#(__(V1,V2)) -> a__and#(a__isList(V1),isNeList(V2)) p14: a__isNeList#(__(V1,V2)) -> a__isList#(V1) p15: a__isList#(__(V1,V2)) -> a__and#(a__isList(V1),isList(V2)) p16: a__isList#(__(V1,V2)) -> a__isList#(V1) p17: a__isNeList#(__(V1,V2)) -> a__and#(a__isNeList(V1),isList(V2)) p18: a__isNeList#(__(V1,V2)) -> a__isNeList#(V1) p19: mark#(isNeList(X)) -> a__isNeList#(X) p20: a____#(__(X,Y),Z) -> mark#(Z) p21: a____#(X,nil()) -> mark#(X) p22: a____#(nil(),X) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a____#_A(x1,x2) = max{x1 + 43, x2 + 17} ___A(x1,x2) = max{34, x1 + 26, x2} mark_A(x1) = max{8, x1} a_____A(x1,x2) = max{34, x1 + 26, x2} mark#_A(x1) = x1 + 17 and_A(x1,x2) = max{14, x1 + 5, x2} a__and#_A(x1,x2) = max{x1 + 20, x2 + 17} tt_A = 0 isList_A(x1) = x1 + 39 a__isList#_A(x1) = x1 + 56 a__isNeList#_A(x1) = x1 + 56 a__isList_A(x1) = x1 + 39 isNeList_A(x1) = x1 + 39 a__isNeList_A(x1) = x1 + 39 nil_A = 1 a__and_A(x1,x2) = max{14, x1 + 5, x2} a__isNePal_A(x1) = max{8, x1} a__isQid_A(x1) = max{1, x1 - 6} isPal_A(x1) = max{27, x1 + 9} a__isPal_A(x1) = max{27, x1 + 9} a_A = 7 e_A = 8 i_A = 7 o_A = 7 u_A = 8 isQid_A(x1) = max{0, x1 - 6} isNePal_A(x1) = x1 precedence: a____# = __ = mark = a____ = mark# = and = a__and# = tt = isList = a__isList# = a__isNeList# = a__isList = isNeList = a__isNeList = nil = a__and = a__isNePal = a__isQid = isPal = a__isPal = a = e = i = o = u = isQid = isNePal partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(mark#) = [] pi(and) = [] pi(a__and#) = [] pi(tt) = [] pi(isList) = [] pi(a__isList#) = [] pi(a__isNeList#) = [] pi(a__isList) = [] pi(isNeList) = [] pi(a__isNeList) = [] pi(nil) = [] pi(a__and) = [] pi(a__isNePal) = [] pi(a__isQid) = [] pi(isPal) = [] pi(a__isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isQid) = [] pi(isNePal) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: a____#_A(x1,x2) = 20 ___A(x1,x2) = 16 mark_A(x1) = 16 a_____A(x1,x2) = 16 mark#_A(x1) = 20 and_A(x1,x2) = 8 a__and#_A(x1,x2) = 20 tt_A = 14 isList_A(x1) = 12 a__isList#_A(x1) = 20 a__isNeList#_A(x1) = 20 a__isList_A(x1) = 16 isNeList_A(x1) = 10 a__isNeList_A(x1) = 16 nil_A = 3 a__and_A(x1,x2) = 16 a__isNePal_A(x1) = 16 a__isQid_A(x1) = 13 isPal_A(x1) = 0 a__isPal_A(x1) = 16 a_A = 17 e_A = 0 i_A = 0 o_A = 0 u_A = 13 isQid_A(x1) = 12 isNePal_A(x1) = 1 precedence: o = isNePal > a > a____# = mark = a____ = mark# = and = a__and# = tt = isList = a__isList# = a__isNeList# = a__isList = isNeList = a__isNeList = nil = a__and = i > u > a__isNePal = a__isPal = isQid > __ > a__isQid = isPal = e partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(mark#) = [] pi(and) = [] pi(a__and#) = [] pi(tt) = [] pi(isList) = [] pi(a__isList#) = [] pi(a__isNeList#) = [] pi(a__isList) = [] pi(isNeList) = [] pi(a__isNeList) = [] pi(nil) = [] pi(a__and) = [] pi(a__isNePal) = [] pi(a__isQid) = [] pi(isPal) = [] pi(a__isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isQid) = [] pi(isNePal) = [] The next rules are strictly ordered: p5, p10, p14, p18, p21 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> mark#(X) p3: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p4: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p5: mark#(__(X1,X2)) -> mark#(X1) p6: mark#(__(X1,X2)) -> mark#(X2) p7: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p8: a__and#(tt(),X) -> mark#(X) p9: mark#(isList(X)) -> a__isList#(X) p10: a__isList#(V) -> a__isNeList#(V) p11: a__isNeList#(__(V1,V2)) -> a__and#(a__isList(V1),isNeList(V2)) p12: a__isList#(__(V1,V2)) -> a__and#(a__isList(V1),isList(V2)) p13: a__isList#(__(V1,V2)) -> a__isList#(V1) p14: a__isNeList#(__(V1,V2)) -> a__and#(a__isNeList(V1),isList(V2)) p15: mark#(isNeList(X)) -> a__isNeList#(X) p16: a____#(__(X,Y),Z) -> mark#(Z) p17: a____#(nil(),X) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(nil(),X) -> mark#(X) p3: mark#(isNeList(X)) -> a__isNeList#(X) p4: a__isNeList#(__(V1,V2)) -> a__and#(a__isNeList(V1),isList(V2)) p5: a__and#(tt(),X) -> mark#(X) p6: mark#(isList(X)) -> a__isList#(X) p7: a__isList#(__(V1,V2)) -> a__isList#(V1) p8: a__isList#(__(V1,V2)) -> a__and#(a__isList(V1),isList(V2)) p9: a__isList#(V) -> a__isNeList#(V) p10: a__isNeList#(__(V1,V2)) -> a__and#(a__isList(V1),isNeList(V2)) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(__(X1,X2)) -> mark#(X2) p13: mark#(__(X1,X2)) -> mark#(X1) p14: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p15: a____#(__(X,Y),Z) -> mark#(Z) p16: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p17: a____#(__(X,Y),Z) -> mark#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a____#_A(x1,x2) = max{x1 + 7, x2} ___A(x1,x2) = max{13, x1 + 7, x2} mark_A(x1) = max{1, x1} a_____A(x1,x2) = max{13, x1 + 7, x2} nil_A = 4 mark#_A(x1) = x1 isNeList_A(x1) = x1 + 15 a__isNeList#_A(x1) = x1 + 15 a__and#_A(x1,x2) = max{x1 - 14, x2} a__isNeList_A(x1) = x1 + 15 isList_A(x1) = max{27, x1 + 15} tt_A = 3 a__isList#_A(x1) = max{16, x1 + 15} a__isList_A(x1) = max{27, x1 + 15} and_A(x1,x2) = max{x1, x2} a__and_A(x1,x2) = max{x1, x2} a__isNePal_A(x1) = max{11, x1 + 3} a__isQid_A(x1) = max{11, x1 + 2} isPal_A(x1) = max{12, x1 + 7} a__isPal_A(x1) = max{12, x1 + 7} a_A = 4 e_A = 2 i_A = 4 o_A = 4 u_A = 4 isQid_A(x1) = max{11, x1 + 2} isNePal_A(x1) = max{11, x1 + 3} precedence: mark = a____ = nil = a__isNeList = a__isList = a__and = a__isNePal = a = e = i = isNePal > __ > isPal = a__isPal = o > isNeList = a__isQid > isQid > u > a____# = mark# = a__isNeList# = a__and# = isList = tt = a__isList# = and partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(nil) = [] pi(mark#) = [] pi(isNeList) = [] pi(a__isNeList#) = [] pi(a__and#) = [] pi(a__isNeList) = [] pi(isList) = [] pi(tt) = [] pi(a__isList#) = [] pi(a__isList) = [] pi(and) = [] pi(a__and) = [] pi(a__isNePal) = [] pi(a__isQid) = [] pi(isPal) = [1] pi(a__isPal) = [1] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isQid) = [] pi(isNePal) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: a____#_A(x1,x2) = 2 ___A(x1,x2) = 21 mark_A(x1) = 21 a_____A(x1,x2) = 21 nil_A = 2 mark#_A(x1) = 2 isNeList_A(x1) = 18 a__isNeList#_A(x1) = 2 a__and#_A(x1,x2) = 2 a__isNeList_A(x1) = 21 isList_A(x1) = 20 tt_A = 3 a__isList#_A(x1) = 2 a__isList_A(x1) = 21 and_A(x1,x2) = 3 a__and_A(x1,x2) = 21 a__isNePal_A(x1) = 21 a__isQid_A(x1) = 20 isPal_A(x1) = 11 a__isPal_A(x1) = 21 a_A = 2 e_A = 2 i_A = 2 o_A = 2 u_A = 22 isQid_A(x1) = 1 isNePal_A(x1) = 1 precedence: isNePal > tt > a____# = mark# = isNeList = a__isNeList# = a__and# = a__isList# > u = isQid > __ = mark = a____ = nil = a__isNeList = a__isList = a__and > and = i = o > isList > a__isNePal = a__isQid = isPal = a__isPal = a = e partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(nil) = [] pi(mark#) = [] pi(isNeList) = [] pi(a__isNeList#) = [] pi(a__and#) = [] pi(a__isNeList) = [] pi(isList) = [] pi(tt) = [] pi(a__isList#) = [] pi(a__isList) = [] pi(and) = [] pi(a__and) = [] pi(a__isNePal) = [] pi(a__isQid) = [] pi(isPal) = [] pi(a__isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isQid) = [] pi(isNePal) = [] The next rules are strictly ordered: p7, p13, p17 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(nil(),X) -> mark#(X) p3: mark#(isNeList(X)) -> a__isNeList#(X) p4: a__isNeList#(__(V1,V2)) -> a__and#(a__isNeList(V1),isList(V2)) p5: a__and#(tt(),X) -> mark#(X) p6: mark#(isList(X)) -> a__isList#(X) p7: a__isList#(__(V1,V2)) -> a__and#(a__isList(V1),isList(V2)) p8: a__isList#(V) -> a__isNeList#(V) p9: a__isNeList#(__(V1,V2)) -> a__and#(a__isList(V1),isNeList(V2)) p10: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p11: mark#(__(X1,X2)) -> mark#(X2) p12: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p13: a____#(__(X,Y),Z) -> mark#(Z) p14: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p3: a____#(__(X,Y),Z) -> mark#(Z) p4: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p5: a____#(nil(),X) -> mark#(X) p6: mark#(__(X1,X2)) -> mark#(X2) p7: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p8: a__and#(tt(),X) -> mark#(X) p9: mark#(isList(X)) -> a__isList#(X) p10: a__isList#(V) -> a__isNeList#(V) p11: a__isNeList#(__(V1,V2)) -> a__and#(a__isList(V1),isNeList(V2)) p12: a__isNeList#(__(V1,V2)) -> a__and#(a__isNeList(V1),isList(V2)) p13: a__isList#(__(V1,V2)) -> a__and#(a__isList(V1),isList(V2)) p14: mark#(isNeList(X)) -> a__isNeList#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a____#_A(x1,x2) = max{x1 + 20, x2 + 5} ___A(x1,x2) = max{30, x1 + 15, x2} mark_A(x1) = max{6, x1} a_____A(x1,x2) = max{30, x1 + 15, x2} mark#_A(x1) = x1 + 5 nil_A = 6 and_A(x1,x2) = max{x1, x2 + 6} a__and#_A(x1,x2) = max{x1 - 3, x2 + 5} tt_A = 6 isList_A(x1) = 0 a__isList#_A(x1) = 5 a__isNeList#_A(x1) = 5 a__isList_A(x1) = 6 isNeList_A(x1) = 0 a__isNeList_A(x1) = 6 a__and_A(x1,x2) = max{x1, x2 + 6} a__isNePal_A(x1) = max{7, x1 + 2} a__isQid_A(x1) = 6 isPal_A(x1) = x1 + 8 a__isPal_A(x1) = x1 + 8 a_A = 5 e_A = 5 i_A = 5 o_A = 5 u_A = 5 isQid_A(x1) = 6 isNePal_A(x1) = max{7, x1 + 2} precedence: a____# = __ = mark = a____ = mark# = nil = and = a__and# = tt = isList = a__isList# = a__isNeList# = a__isList = isNeList = a__isNeList = a__and = a__isNePal = a__isQid = isPal = a__isPal = a = e = i = o = u = isQid = isNePal partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(mark#) = [] pi(nil) = [] pi(and) = [] pi(a__and#) = [] pi(tt) = [] pi(isList) = [] pi(a__isList#) = [] pi(a__isNeList#) = [] pi(a__isList) = [] pi(isNeList) = [] pi(a__isNeList) = [] pi(a__and) = [] pi(a__isNePal) = [] pi(a__isQid) = [] pi(isPal) = [] pi(a__isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isQid) = [] pi(isNePal) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: a____#_A(x1,x2) = 9 ___A(x1,x2) = 30 mark_A(x1) = 55 a_____A(x1,x2) = 55 mark#_A(x1) = 9 nil_A = 30 and_A(x1,x2) = 27 a__and#_A(x1,x2) = 9 tt_A = 28 isList_A(x1) = 25 a__isList#_A(x1) = 9 a__isNeList#_A(x1) = 9 a__isList_A(x1) = 55 isNeList_A(x1) = 23 a__isNeList_A(x1) = 55 a__and_A(x1,x2) = 55 a__isNePal_A(x1) = 55 a__isQid_A(x1) = 30 isPal_A(x1) = 25 a__isPal_A(x1) = 55 a_A = 26 e_A = 56 i_A = 56 o_A = 26 u_A = 0 isQid_A(x1) = 0 isNePal_A(x1) = 25 precedence: mark = a____ = a__isList = a__isNeList = a__and = a__isNePal = isPal = a__isPal > and = isNeList = u = isQid > isList > a____# = mark# = a__and# = a__isList# = a__isNeList# = isNePal > nil > a > __ = a__isQid > tt > e = i = o partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(mark#) = [] pi(nil) = [] pi(and) = [] pi(a__and#) = [] pi(tt) = [] pi(isList) = [] pi(a__isList#) = [] pi(a__isNeList#) = [] pi(a__isList) = [] pi(isNeList) = [] pi(a__isNeList) = [] pi(a__and) = [] pi(a__isNePal) = [] pi(a__isQid) = [] pi(isPal) = [] pi(a__isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(isQid) = [] pi(isNePal) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) p3: a____#(__(X,Y),Z) -> mark#(Z) p4: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p5: a____#(nil(),X) -> mark#(X) p6: mark#(__(X1,X2)) -> mark#(X2) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(isList(X)) -> a__isList#(X) p9: a__isList#(V) -> a__isNeList#(V) p10: a__isNeList#(__(V1,V2)) -> a__and#(a__isList(V1),isNeList(V2)) p11: a__isNeList#(__(V1,V2)) -> a__and#(a__isNeList(V1),isList(V2)) p12: a__isList#(__(V1,V2)) -> a__and#(a__isList(V1),isList(V2)) p13: mark#(isNeList(X)) -> a__isNeList#(X) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(nil(),X) -> mark#(X) p3: mark#(isNeList(X)) -> a__isNeList#(X) p4: a__isNeList#(__(V1,V2)) -> a__and#(a__isNeList(V1),isList(V2)) p5: a__and#(tt(),X) -> mark#(X) p6: mark#(isList(X)) -> a__isList#(X) p7: a__isList#(__(V1,V2)) -> a__and#(a__isList(V1),isList(V2)) p8: a__isList#(V) -> a__isNeList#(V) p9: a__isNeList#(__(V1,V2)) -> a__and#(a__isList(V1),isNeList(V2)) p10: mark#(__(X1,X2)) -> mark#(X2) p11: mark#(__(X1,X2)) -> a____#(mark(X1),mark(X2)) p12: a____#(__(X,Y),Z) -> mark#(Z) p13: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a____#_A(x1,x2) = ((1,0),(1,0)) x1 + x2 + (6,1) ___A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (7,0) mark_A(x1) = ((1,0),(0,0)) x1 + (0,5) a_____A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (7,4) nil_A() = (7,1) mark#_A(x1) = x1 + (1,7) isNeList_A(x1) = ((1,0),(0,0)) x1 + (3,4) a__isNeList#_A(x1) = ((1,0),(0,0)) x1 + (4,1) a__and#_A(x1,x2) = ((1,0),(0,0)) x2 + (8,1) a__isNeList_A(x1) = ((1,0),(0,0)) x1 + (3,4) isList_A(x1) = ((1,0),(0,0)) x1 + (3,2) tt_A() = (8,2) a__isList#_A(x1) = ((1,0),(0,0)) x1 + (4,1) a__isList_A(x1) = ((1,0),(0,0)) x1 + (3,4) a__and_A(x1,x2) = ((1,0),(0,0)) x2 + (3,1) a__isNePal_A(x1) = ((1,0),(0,0)) x1 + (4,4) a__isQid_A(x1) = ((1,0),(0,0)) x1 + (2,3) isPal_A(x1) = ((1,0),(0,0)) x1 + (15,5) a__isPal_A(x1) = ((1,0),(0,0)) x1 + (15,5) a_A() = (9,5) e_A() = (9,5) i_A() = (7,5) o_A() = (9,5) u_A() = (9,1) and_A(x1,x2) = ((1,0),(0,0)) x2 + (3,1) isQid_A(x1) = ((1,0),(0,0)) x1 + (2,1) isNePal_A(x1) = ((1,0),(0,0)) x1 + (4,4) precedence: isList > mark > a__isList = isPal = a__isPal > a____ = tt > __ > o > u > a__isNePal = a > a__and > a__isNeList > isNeList = and > e = i > a__isList# > a__isNeList# > a__and# > a____# = nil = mark# = a__isQid = isQid = isNePal partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(nil) = [] pi(mark#) = [] pi(isNeList) = [] pi(a__isNeList#) = [] pi(a__and#) = [] pi(a__isNeList) = [] pi(isList) = [] pi(tt) = [] pi(a__isList#) = [] pi(a__isList) = [] pi(a__and) = [] pi(a__isNePal) = [] pi(a__isQid) = [] pi(isPal) = [] pi(a__isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(and) = [] pi(isQid) = [] pi(isNePal) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a____#_A(x1,x2) = (8,6) ___A(x1,x2) = (4,0) mark_A(x1) = (4,0) a_____A(x1,x2) = (4,0) nil_A() = (3,0) mark#_A(x1) = (8,5) isNeList_A(x1) = (1,0) a__isNeList#_A(x1) = (10,0) a__and#_A(x1,x2) = (9,6) a__isNeList_A(x1) = (3,2) isList_A(x1) = (5,1) tt_A() = (1,0) a__isList#_A(x1) = (7,4) a__isList_A(x1) = (6,3) a__and_A(x1,x2) = (2,1) a__isNePal_A(x1) = (3,0) a__isQid_A(x1) = (2,0) isPal_A(x1) = (3,0) a__isPal_A(x1) = (3,0) a_A() = (1,0) e_A() = (1,0) i_A() = (1,0) o_A() = (1,0) u_A() = (2,0) and_A(x1,x2) = (1,0) isQid_A(x1) = (1,1) isNePal_A(x1) = (2,0) precedence: a__isList > a____# > a__and > __ = mark = a____ = a__and# = isList > mark# > tt > isPal = a__isPal > isNePal > and > o > a > e = i > a__isNePal > u > a__isQid > a__isNeList > isNeList > isQid > nil > a__isList# > a__isNeList# partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(nil) = [] pi(mark#) = [] pi(isNeList) = [] pi(a__isNeList#) = [] pi(a__and#) = [] pi(a__isNeList) = [] pi(isList) = [] pi(tt) = [] pi(a__isList#) = [] pi(a__isList) = [] pi(a__and) = [] pi(a__isNePal) = [] pi(a__isQid) = [] pi(isPal) = [] pi(a__isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(and) = [] pi(isQid) = [] pi(isNePal) = [] The next rules are strictly ordered: p3, p4, p5, p6, p7, p8, p9, p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(nil(),X) -> mark#(X) p3: mark#(__(X1,X2)) -> mark#(X2) p4: a____#(__(X,Y),Z) -> mark#(Z) p5: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The estimated dependency graph contains the following SCCs: {p1, p5} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(X),a____(mark(Y),mark(Z))) p2: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a____#_A(x1,x2) = max{x1 + 25, x2 + 13} ___A(x1,x2) = max{x1 + 11, x2} mark_A(x1) = x1 a_____A(x1,x2) = max{x1 + 11, x2} a__and_A(x1,x2) = max{7, x2} tt_A = 2 a__isList_A(x1) = x1 + 6 a__isNeList_A(x1) = x1 + 6 nil_A = 3 isList_A(x1) = x1 + 6 a__isQid_A(x1) = x1 + 3 isNeList_A(x1) = x1 + 6 a__isNePal_A(x1) = x1 + 9 isPal_A(x1) = x1 + 10 a__isPal_A(x1) = x1 + 10 a_A = 3 e_A = 3 i_A = 1 o_A = 3 u_A = 1 and_A(x1,x2) = max{7, x2} isQid_A(x1) = x1 + 3 isNePal_A(x1) = x1 + 9 precedence: a____# = __ = mark = a____ = a__and = tt = a__isList = a__isNeList = nil = isList = a__isQid = isNeList = a__isNePal = isPal = a__isPal = a = e = i = o = u = and = isQid = isNePal partial status: pi(a____#) = [1, 2] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(a__and) = [] pi(tt) = [] pi(a__isList) = [] pi(a__isNeList) = [] pi(nil) = [] pi(isList) = [] pi(a__isQid) = [] pi(isNeList) = [] pi(a__isNePal) = [] pi(isPal) = [] pi(a__isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(and) = [] pi(isQid) = [] pi(isNePal) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: a____#_A(x1,x2) = max{x1 + 22, x2 + 20} ___A(x1,x2) = 10 mark_A(x1) = 10 a_____A(x1,x2) = 10 a__and_A(x1,x2) = 10 tt_A = 10 a__isList_A(x1) = 10 a__isNeList_A(x1) = 10 nil_A = 10 isList_A(x1) = 10 a__isQid_A(x1) = 10 isNeList_A(x1) = 10 a__isNePal_A(x1) = 10 isPal_A(x1) = 10 a__isPal_A(x1) = 10 a_A = 0 e_A = 10 i_A = 10 o_A = 10 u_A = 10 and_A(x1,x2) = 10 isQid_A(x1) = 9 isNePal_A(x1) = 1 precedence: a____# > isQid > __ = mark = a____ = a__and = a__isList = a__isNeList = and = isNePal > u > isList = e > a__isPal > isPal > a__isNePal = a > a__isQid > isNeList > nil = i > o > tt partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(a__and) = [] pi(tt) = [] pi(a__isList) = [] pi(a__isNeList) = [] pi(nil) = [] pi(isList) = [] pi(a__isQid) = [] pi(isNeList) = [] pi(a__isNePal) = [] pi(isPal) = [] pi(a__isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(and) = [] pi(isQid) = [] pi(isNePal) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a____#(__(X,Y),Z) -> a____#(mark(Y),mark(Z)) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a____#_A(x1,x2) = ((1,0),(0,0)) x1 + (1,11) ___A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (10,10) mark_A(x1) = ((1,0),(1,1)) x1 + (0,9) a_____A(x1,x2) = ((1,0),(0,0)) x1 + ((1,0),(0,0)) x2 + (10,11) nil_A() = (4,10) a__and_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (7,2) tt_A() = (8,0) a__isList_A(x1) = ((1,0),(1,0)) x1 + (5,24) a__isNeList_A(x1) = ((1,0),(1,0)) x1 + (4,13) isList_A(x1) = ((1,0),(0,0)) x1 + (5,11) a__isQid_A(x1) = ((1,0),(0,0)) x1 + (2,12) isNeList_A(x1) = ((1,0),(0,0)) x1 + (4,0) a__isNePal_A(x1) = ((1,0),(0,0)) x1 + (3,20) isPal_A(x1) = x1 + (4,11) a__isPal_A(x1) = x1 + (4,24) a_A() = (7,0) e_A() = (7,1) i_A() = (7,0) o_A() = (7,1) u_A() = (7,0) and_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (7,1) isQid_A(x1) = ((1,0),(0,0)) x1 + (2,11) isNePal_A(x1) = ((1,0),(0,0)) x1 + (3,9) precedence: a__isList > a__and = u > mark > a____ = e > a__isNeList = a__isPal > a__isNePal > a__isQid > tt > a > nil = isQid > a____# > isNeList = o > isPal = i = isNePal > isList > __ > and partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(nil) = [] pi(a__and) = [] pi(tt) = [] pi(a__isList) = [] pi(a__isNeList) = [] pi(isList) = [] pi(a__isQid) = [] pi(isNeList) = [] pi(a__isNePal) = [] pi(isPal) = [] pi(a__isPal) = [1] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(and) = [] pi(isQid) = [] pi(isNePal) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a____#_A(x1,x2) = (1,1) ___A(x1,x2) = (5,5) mark_A(x1) = (7,8) a_____A(x1,x2) = (6,6) nil_A() = (8,7) a__and_A(x1,x2) = (2,8) tt_A() = (3,1) a__isList_A(x1) = (4,4) a__isNeList_A(x1) = (3,3) isList_A(x1) = (3,1) a__isQid_A(x1) = (3,2) isNeList_A(x1) = (0,0) a__isNePal_A(x1) = (8,1) isPal_A(x1) = (4,6) a__isPal_A(x1) = (6,7) a_A() = (4,2) e_A() = (4,2) i_A() = (4,2) o_A() = (4,2) u_A() = (4,2) and_A(x1,x2) = (1,8) isQid_A(x1) = (0,2) isNePal_A(x1) = (7,0) precedence: u > a____ > i > a__isPal > a__isNePal > mark = a__and > o > __ = a__isNeList = e > a____# = isPal > a__isQid > nil = tt = a__isList > isNeList > isNePal > and > isList > a > isQid partial status: pi(a____#) = [] pi(__) = [] pi(mark) = [] pi(a____) = [] pi(nil) = [] pi(a__and) = [] pi(tt) = [] pi(a__isList) = [] pi(a__isNeList) = [] pi(isList) = [] pi(a__isQid) = [] pi(isNeList) = [] pi(a__isNePal) = [] pi(isPal) = [] pi(a__isPal) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(and) = [] pi(isQid) = [] pi(isNePal) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(__(X1,X2)) -> mark#(X2) and R consists of: r1: a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z))) r2: a____(X,nil()) -> mark(X) r3: a____(nil(),X) -> mark(X) r4: a__and(tt(),X) -> mark(X) r5: a__isList(V) -> a__isNeList(V) r6: a__isList(nil()) -> tt() r7: a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2)) r8: a__isNeList(V) -> a__isQid(V) r9: a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2)) r10: a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2)) r11: a__isNePal(V) -> a__isQid(V) r12: a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P)) r13: a__isPal(V) -> a__isNePal(V) r14: a__isPal(nil()) -> tt() r15: a__isQid(a()) -> tt() r16: a__isQid(e()) -> tt() r17: a__isQid(i()) -> tt() r18: a__isQid(o()) -> tt() r19: a__isQid(u()) -> tt() r20: mark(__(X1,X2)) -> a____(mark(X1),mark(X2)) r21: mark(and(X1,X2)) -> a__and(mark(X1),X2) r22: mark(isList(X)) -> a__isList(X) r23: mark(isNeList(X)) -> a__isNeList(X) r24: mark(isQid(X)) -> a__isQid(X) r25: mark(isNePal(X)) -> a__isNePal(X) r26: mark(isPal(X)) -> a__isPal(X) r27: mark(nil()) -> nil() r28: mark(tt()) -> tt() r29: mark(a()) -> a() r30: mark(e()) -> e() r31: mark(i()) -> i() r32: mark(o()) -> o() r33: mark(u()) -> u() r34: a____(X1,X2) -> __(X1,X2) r35: a__and(X1,X2) -> and(X1,X2) r36: a__isList(X) -> isList(X) r37: a__isNeList(X) -> isNeList(X) r38: a__isQid(X) -> isQid(X) r39: a__isNePal(X) -> isNePal(X) r40: a__isPal(X) -> isPal(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 2 ___A(x1,x2) = max{x1 + 2, x2 + 2} precedence: __ > mark# partial status: pi(mark#) = [1] pi(__) = [1, 2] 2. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 3 ___A(x1,x2) = max{x1 - 1, x2} precedence: mark# = __ partial status: pi(mark#) = [] pi(__) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.