YES We show the termination of the TRS R: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) a__U12(tt(),V2) -> a__U13(a__isNat(V2)) a__U13(tt()) -> tt() a__U21(tt(),V1) -> a__U22(a__isNat(V1)) a__U22(tt()) -> tt() a__U31(tt(),N) -> mark(N) a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) a__and(tt(),X) -> mark(X) a__isNat(|0|()) -> tt() a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) a__isNatKind(|0|()) -> tt() a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) a__isNatKind(s(V1)) -> a__isNatKind(V1) a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) mark(U12(X1,X2)) -> a__U12(mark(X1),X2) mark(isNat(X)) -> a__isNat(X) mark(U13(X)) -> a__U13(mark(X)) mark(U21(X1,X2)) -> a__U21(mark(X1),X2) mark(U22(X)) -> a__U22(mark(X)) mark(U31(X1,X2)) -> a__U31(mark(X1),X2) mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) mark(and(X1,X2)) -> a__and(mark(X1),X2) mark(isNatKind(X)) -> a__isNatKind(X) mark(tt()) -> tt() mark(s(X)) -> s(mark(X)) mark(|0|()) -> |0|() a__U11(X1,X2,X3) -> U11(X1,X2,X3) a__U12(X1,X2) -> U12(X1,X2) a__isNat(X) -> isNat(X) a__U13(X) -> U13(X) a__U21(X1,X2) -> U21(X1,X2) a__U22(X) -> U22(X) a__U31(X1,X2) -> U31(X1,X2) a__U41(X1,X2,X3) -> U41(X1,X2,X3) a__plus(X1,X2) -> plus(X1,X2) a__and(X1,X2) -> and(X1,X2) a__isNatKind(X) -> isNatKind(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p3: a__U12#(tt(),V2) -> a__U13#(a__isNat(V2)) p4: a__U12#(tt(),V2) -> a__isNat#(V2) p5: a__U21#(tt(),V1) -> a__U22#(a__isNat(V1)) p6: a__U21#(tt(),V1) -> a__isNat#(V1) p7: a__U31#(tt(),N) -> mark#(N) p8: a__U41#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p9: a__U41#(tt(),M,N) -> mark#(N) p10: a__U41#(tt(),M,N) -> mark#(M) p11: a__and#(tt(),X) -> mark#(X) p12: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p13: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p14: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p15: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p16: a__isNat#(s(V1)) -> a__isNatKind#(V1) p17: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p18: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p20: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) p21: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p22: a__plus#(N,|0|()) -> a__isNat#(N) p23: a__plus#(N,s(M)) -> a__U41#(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) p24: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p25: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNatKind(M)) p26: a__plus#(N,s(M)) -> a__isNat#(M) p27: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p28: mark#(U11(X1,X2,X3)) -> mark#(X1) p29: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p30: mark#(U12(X1,X2)) -> mark#(X1) p31: mark#(isNat(X)) -> a__isNat#(X) p32: mark#(U13(X)) -> a__U13#(mark(X)) p33: mark#(U13(X)) -> mark#(X) p34: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p35: mark#(U21(X1,X2)) -> mark#(X1) p36: mark#(U22(X)) -> a__U22#(mark(X)) p37: mark#(U22(X)) -> mark#(X) p38: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p39: mark#(U31(X1,X2)) -> mark#(X1) p40: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p41: mark#(U41(X1,X2,X3)) -> mark#(X1) p42: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p43: mark#(plus(X1,X2)) -> mark#(X1) p44: mark#(plus(X1,X2)) -> mark#(X2) p45: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p46: mark#(and(X1,X2)) -> mark#(X1) p47: mark#(isNatKind(X)) -> a__isNatKind#(X) p48: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p4, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p33, p34, p35, p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p15: a__plus#(N,s(M)) -> a__isNat#(M) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(plus(V1,V2)) -> a__isNatKind#(V1) p19: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p20: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p21: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p22: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNatKind(M)) p23: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p24: a__plus#(N,s(M)) -> a__U41#(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) p25: a__U41#(tt(),M,N) -> mark#(M) p26: mark#(U41(X1,X2,X3)) -> mark#(X1) p27: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p28: a__U41#(tt(),M,N) -> mark#(N) p29: mark#(U31(X1,X2)) -> mark#(X1) p30: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p31: a__U31#(tt(),N) -> mark#(N) p32: mark#(U22(X)) -> mark#(X) p33: mark#(U21(X1,X2)) -> mark#(X1) p34: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p35: mark#(U13(X)) -> mark#(X) p36: mark#(isNat(X)) -> a__isNat#(X) p37: mark#(U12(X1,X2)) -> mark#(X1) p38: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p39: mark#(U11(X1,X2,X3)) -> mark#(X1) p40: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p41: a__U41#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p42: a__plus#(N,|0|()) -> a__isNat#(N) p43: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p44: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a__U11#_A(x1,x2,x3) = max{x1 + 1, x2 + 153, x3 + 56} tt_A = 10 a__U12#_A(x1,x2) = max{153, x2 + 36} a__isNat_A(x1) = max{32, x1 - 82} a__isNat#_A(x1) = x1 + 35 s_A(x1) = max{119, x1} a__isNatKind#_A(x1) = max{154, x1 - 11} plus_A(x1,x2) = max{187, x1 + 165, x2 + 21} a__and#_A(x1,x2) = max{154, x2 + 122} a__isNatKind_A(x1) = max{33, x1 - 132} isNatKind_A(x1) = max{33, x1 - 132} mark#_A(x1) = x1 + 121 and_A(x1,x2) = max{33, x1 + 11, x2 + 21} mark_A(x1) = max{22, x1} a__plus#_A(x1,x2) = max{x1 + 165, x2 + 134} a__U21#_A(x1,x2) = max{153, x1 + 1, x2 + 35} a__and_A(x1,x2) = max{33, x1 + 11, x2 + 21} isNat_A(x1) = max{32, x1 - 82} a__U41#_A(x1,x2,x3) = max{x1 + 177, x2 + 134, x3 + 165} U41_A(x1,x2,x3) = max{187, x1 + 56, x2 + 21, x3 + 165} U31_A(x1,x2) = max{x1 + 4, x2 + 43} a__U31#_A(x1,x2) = max{x1 + 20, x2 + 164} U22_A(x1) = max{1, x1} U21_A(x1,x2) = max{32, x1 + 4, x2 - 82} U13_A(x1) = max{23, x1} U12_A(x1,x2) = max{32, x1, x2 - 66} U11_A(x1,x2,x3) = max{x1 + 1, x2 + 83, x3 - 65} |0|_A = 21 a__U11_A(x1,x2,x3) = max{x1 + 1, x2 + 83, x3 - 65} a__U12_A(x1,x2) = max{32, x1, x2 - 66} a__U13_A(x1) = max{23, x1} a__U21_A(x1,x2) = max{32, x1 + 4, x2 - 82} a__U22_A(x1) = max{11, x1} a__U31_A(x1,x2) = max{x1 + 4, x2 + 43} a__U41_A(x1,x2,x3) = max{187, x1 + 56, x2 + 21, x3 + 165} a__plus_A(x1,x2) = max{187, x1 + 165, x2 + 21} precedence: a__U11# = tt = a__U12# = a__isNat = a__isNat# = s = a__isNatKind# = plus = a__and# = a__isNatKind = isNatKind = mark# = and = mark = a__plus# = a__U21# = a__and = isNat = a__U41# = U41 = U31 = a__U31# = U22 = U21 = U13 = U12 = U11 = |0| = a__U11 = a__U12 = a__U13 = a__U21 = a__U22 = a__U31 = a__U41 = a__plus partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(s) = [] pi(a__isNatKind#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(and) = [] pi(mark) = [] pi(a__plus#) = [] pi(a__U21#) = [] pi(a__and) = [] pi(isNat) = [] pi(a__U41#) = [] pi(U41) = [] pi(U31) = [] pi(a__U31#) = [] pi(U22) = [] pi(U21) = [] pi(U13) = [] pi(U12) = [] pi(U11) = [] pi(|0|) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: a__U11#_A(x1,x2,x3) = 31 tt_A = 31 a__U12#_A(x1,x2) = 31 a__isNat_A(x1) = 34 a__isNat#_A(x1) = 31 s_A(x1) = 53 a__isNatKind#_A(x1) = 31 plus_A(x1,x2) = 0 a__and#_A(x1,x2) = 31 a__isNatKind_A(x1) = 101 isNatKind_A(x1) = 50 mark#_A(x1) = 31 and_A(x1,x2) = 101 mark_A(x1) = 101 a__plus#_A(x1,x2) = 31 a__U21#_A(x1,x2) = 31 a__and_A(x1,x2) = 101 isNat_A(x1) = 33 a__U41#_A(x1,x2,x3) = 31 U41_A(x1,x2,x3) = 54 U31_A(x1,x2) = 32 a__U31#_A(x1,x2) = 31 U22_A(x1) = 32 U21_A(x1,x2) = 32 U13_A(x1) = 0 U12_A(x1,x2) = 30 U11_A(x1,x2,x3) = 34 |0|_A = 101 a__U11_A(x1,x2,x3) = 34 a__U12_A(x1,x2) = 34 a__U13_A(x1) = 34 a__U21_A(x1,x2) = 33 a__U22_A(x1) = 32 a__U31_A(x1,x2) = 101 a__U41_A(x1,x2,x3) = 54 a__plus_A(x1,x2) = 101 precedence: tt = a__U22 > isNat > s > a__isNat = a__isNatKind = mark = a__and = a__U31 = a__plus > a__U11 > a__U12 > a__U41 > U11 > a__U11# = a__U12# = a__isNat# = a__isNatKind# = a__and# = mark# = a__plus# = a__U21# = a__U41# = a__U31# > and = U21 > isNatKind = U41 > plus > a__U21 > U12 > |0| = a__U13 > U22 > U13 > U31 partial status: pi(a__U11#) = [] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(s) = [] pi(a__isNatKind#) = [] pi(plus) = [] pi(a__and#) = [] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(mark#) = [] pi(and) = [] pi(mark) = [] pi(a__plus#) = [] pi(a__U21#) = [] pi(a__and) = [] pi(isNat) = [] pi(a__U41#) = [] pi(U41) = [] pi(U31) = [] pi(a__U31#) = [] pi(U22) = [] pi(U21) = [] pi(U13) = [] pi(U12) = [] pi(U11) = [] pi(|0|) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] The next rules are strictly ordered: p18 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(s(V1)) -> a__isNatKind#(V1) p4: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p7: a__and#(tt(),X) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(isNatKind(X)) -> a__isNatKind#(X) p10: mark#(and(X1,X2)) -> mark#(X1) p11: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p12: mark#(plus(X1,X2)) -> mark#(X2) p13: mark#(plus(X1,X2)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p15: a__plus#(N,s(M)) -> a__isNat#(M) p16: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p17: a__U21#(tt(),V1) -> a__isNat#(V1) p18: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p19: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p20: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p21: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNatKind(M)) p22: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p23: a__plus#(N,s(M)) -> a__U41#(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) p24: a__U41#(tt(),M,N) -> mark#(M) p25: mark#(U41(X1,X2,X3)) -> mark#(X1) p26: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p27: a__U41#(tt(),M,N) -> mark#(N) p28: mark#(U31(X1,X2)) -> mark#(X1) p29: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p30: a__U31#(tt(),N) -> mark#(N) p31: mark#(U22(X)) -> mark#(X) p32: mark#(U21(X1,X2)) -> mark#(X1) p33: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p34: mark#(U13(X)) -> mark#(X) p35: mark#(isNat(X)) -> a__isNat#(X) p36: mark#(U12(X1,X2)) -> mark#(X1) p37: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p38: mark#(U11(X1,X2,X3)) -> mark#(X1) p39: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p40: a__U41#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p41: a__plus#(N,|0|()) -> a__isNat#(N) p42: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p43: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U11#(tt(),V1,V2) -> a__U12#(a__isNat(V1),V2) p2: a__U12#(tt(),V2) -> a__isNat#(V2) p3: a__isNat#(plus(V1,V2)) -> a__U11#(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) p4: a__U11#(tt(),V1,V2) -> a__isNat#(V1) p5: a__isNat#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p6: a__and#(tt(),X) -> mark#(X) p7: mark#(U11(X1,X2,X3)) -> a__U11#(mark(X1),X2,X3) p8: mark#(U11(X1,X2,X3)) -> mark#(X1) p9: mark#(U12(X1,X2)) -> a__U12#(mark(X1),X2) p10: mark#(U12(X1,X2)) -> mark#(X1) p11: mark#(isNat(X)) -> a__isNat#(X) p12: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p13: a__U21#(tt(),V1) -> a__isNat#(V1) p14: a__isNat#(s(V1)) -> a__isNatKind#(V1) p15: a__isNatKind#(plus(V1,V2)) -> a__and#(a__isNatKind(V1),isNatKind(V2)) p16: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p17: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p18: mark#(U13(X)) -> mark#(X) p19: mark#(U21(X1,X2)) -> a__U21#(mark(X1),X2) p20: mark#(U21(X1,X2)) -> mark#(X1) p21: mark#(U22(X)) -> mark#(X) p22: mark#(U31(X1,X2)) -> a__U31#(mark(X1),X2) p23: a__U31#(tt(),N) -> mark#(N) p24: mark#(U31(X1,X2)) -> mark#(X1) p25: mark#(U41(X1,X2,X3)) -> a__U41#(mark(X1),X2,X3) p26: a__U41#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p27: a__plus#(N,|0|()) -> a__U31#(a__and(a__isNat(N),isNatKind(N)),N) p28: a__plus#(N,|0|()) -> a__and#(a__isNat(N),isNatKind(N)) p29: a__plus#(N,|0|()) -> a__isNat#(N) p30: a__plus#(N,s(M)) -> a__U41#(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) p31: a__U41#(tt(),M,N) -> mark#(N) p32: mark#(U41(X1,X2,X3)) -> mark#(X1) p33: mark#(plus(X1,X2)) -> a__plus#(mark(X1),mark(X2)) p34: a__plus#(N,s(M)) -> a__and#(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p35: a__plus#(N,s(M)) -> a__and#(a__isNat(M),isNatKind(M)) p36: a__plus#(N,s(M)) -> a__isNat#(M) p37: mark#(plus(X1,X2)) -> mark#(X1) p38: mark#(plus(X1,X2)) -> mark#(X2) p39: mark#(and(X1,X2)) -> a__and#(mark(X1),X2) p40: mark#(and(X1,X2)) -> mark#(X1) p41: mark#(isNatKind(X)) -> a__isNatKind#(X) p42: mark#(s(X)) -> mark#(X) p43: a__U41#(tt(),M,N) -> mark#(M) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a__U11#_A(x1,x2,x3) = max{x1 + 17, x2 + 68, x3 + 67} tt_A = 0 a__U12#_A(x1,x2) = max{x1 + 18, x2 + 65} a__isNat_A(x1) = max{49, x1 - 100} a__isNat#_A(x1) = max{16, x1 - 102} plus_A(x1,x2) = max{360, x1 + 230, x2 + 354} a__and_A(x1,x2) = max{x1 + 21, x2 + 73} a__isNatKind_A(x1) = max{3, x1 - 151} isNatKind_A(x1) = max{2, x1 - 151} a__and#_A(x1,x2) = max{x1 + 14, x2 + 59} mark#_A(x1) = max{15, x1 - 1} U11_A(x1,x2,x3) = max{x1 + 24, x2 + 97, x3 + 68} mark_A(x1) = max{5, x1} U12_A(x1,x2) = max{x1 + 48, x2 + 67} isNat_A(x1) = max{49, x1 - 100} s_A(x1) = max{204, x1} a__U21#_A(x1,x2) = max{x1 + 17, x2 - 102} a__isNatKind#_A(x1) = max{0, x1 - 153} U13_A(x1) = max{49, x1 + 17} U21_A(x1,x2) = max{55, x1 + 50, x2 - 100} U22_A(x1) = x1 U31_A(x1,x2) = max{x1 + 145, x2 + 152} a__U31#_A(x1,x2) = max{x1 + 138, x2 + 16} U41_A(x1,x2,x3) = max{360, x1 + 205, x2 + 354, x3 + 230} a__U41#_A(x1,x2,x3) = max{x1 + 65, x2 + 9, x3 + 60} a__plus#_A(x1,x2) = max{x1 + 60, x2 + 9} |0|_A = 204 and_A(x1,x2) = max{x1 + 21, x2 + 73} a__U11_A(x1,x2,x3) = max{x1 + 24, x2 + 97, x3 + 68} a__U12_A(x1,x2) = max{x1 + 48, x2 + 67} a__U13_A(x1) = max{49, x1 + 17} a__U21_A(x1,x2) = max{55, x1 + 50, x2 - 100} a__U22_A(x1) = max{1, x1} a__U31_A(x1,x2) = max{x1 + 145, x2 + 152} a__U41_A(x1,x2,x3) = max{360, x1 + 205, x2 + 354, x3 + 230} a__plus_A(x1,x2) = max{360, x1 + 230, x2 + 354} precedence: a__U41# = a__plus# > a__isNatKind = mark > a__isNat > plus = U31 = a__U13 = a__U21 = a__U31 = a__plus > tt = U41 = a__U41 > mark# = s > a__U12# > a__and# = isNat > U13 = a__U11 = a__U12 > isNatKind > U11 > a__isNat# = a__U21# > a__isNatKind# > a__and = and > a__U11# > |0| > U12 = a__U22 > U22 = a__U31# > U21 partial status: pi(a__U11#) = [1, 2, 3] pi(tt) = [] pi(a__U12#) = [1, 2] pi(a__isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and) = [1] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(a__and#) = [1, 2] pi(mark#) = [] pi(U11) = [3] pi(mark) = [] pi(U12) = [] pi(isNat) = [] pi(s) = [] pi(a__U21#) = [] pi(a__isNatKind#) = [] pi(U13) = [] pi(U21) = [1] pi(U22) = [] pi(U31) = [] pi(a__U31#) = [] pi(U41) = [] pi(a__U41#) = [] pi(a__plus#) = [] pi(|0|) = [] pi(and) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [3] pi(a__plus) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: a__U11#_A(x1,x2,x3) = max{x1 - 81, x2 + 499, x3 + 499} tt_A = 280 a__U12#_A(x1,x2) = max{x1 + 289, x2 + 129} a__isNat_A(x1) = 210 a__isNat#_A(x1) = 128 plus_A(x1,x2) = 49 a__and_A(x1,x2) = max{115, x1 + 67} a__isNatKind_A(x1) = 127 isNatKind_A(x1) = 47 a__and#_A(x1,x2) = max{45, x1 - 214} mark#_A(x1) = 65 U11_A(x1,x2,x3) = 47 mark_A(x1) = 127 U12_A(x1,x2) = 0 isNat_A(x1) = 210 s_A(x1) = 127 a__U21#_A(x1,x2) = 128 a__isNatKind#_A(x1) = 66 U13_A(x1) = 48 U21_A(x1,x2) = 129 U22_A(x1) = 125 U31_A(x1,x2) = 0 a__U31#_A(x1,x2) = 63 U41_A(x1,x2,x3) = 64 a__U41#_A(x1,x2,x3) = 63 a__plus#_A(x1,x2) = 63 |0|_A = 111 and_A(x1,x2) = 115 a__U11_A(x1,x2,x3) = 127 a__U12_A(x1,x2) = 126 a__U13_A(x1) = 127 a__U21_A(x1,x2) = 210 a__U22_A(x1) = 126 a__U31_A(x1,x2) = 127 a__U41_A(x1,x2,x3) = x3 + 128 a__plus_A(x1,x2) = 127 precedence: U12 > U31 = U41 > a__U41# = a__plus# = a__U12 > mark# > a__U31# > U21 > a__U11# = a__U12# = a__isNat# = a__U21# > a__isNatKind# > isNatKind = a__and# > U22 > a__and > a__U41 > mark = s = a__U31 = a__plus > a__isNatKind > tt > plus = U13 > a__U13 > a__isNat > isNat > a__U22 > a__U11 > U11 > a__U21 > |0| > and partial status: pi(a__U11#) = [3] pi(tt) = [] pi(a__U12#) = [] pi(a__isNat) = [] pi(a__isNat#) = [] pi(plus) = [] pi(a__and) = [1] pi(a__isNatKind) = [] pi(isNatKind) = [] pi(a__and#) = [] pi(mark#) = [] pi(U11) = [] pi(mark) = [] pi(U12) = [] pi(isNat) = [] pi(s) = [] pi(a__U21#) = [] pi(a__isNatKind#) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(U31) = [] pi(a__U31#) = [] pi(U41) = [] pi(a__U41#) = [] pi(a__plus#) = [] pi(|0|) = [] pi(and) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p9, p11, p14, p15, p19, p22, p23, p25, p27, p28, p29, p31, p33, p34, p35, p36, p39, p41, p43 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2,X3)) -> mark#(X1) p2: mark#(U12(X1,X2)) -> mark#(X1) p3: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p4: a__U21#(tt(),V1) -> a__isNat#(V1) p5: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p6: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) p7: mark#(U13(X)) -> mark#(X) p8: mark#(U21(X1,X2)) -> mark#(X1) p9: mark#(U22(X)) -> mark#(X) p10: mark#(U31(X1,X2)) -> mark#(X1) p11: a__U41#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p12: a__plus#(N,s(M)) -> a__U41#(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) p13: mark#(U41(X1,X2,X3)) -> mark#(X1) p14: mark#(plus(X1,X2)) -> mark#(X1) p15: mark#(plus(X1,X2)) -> mark#(X2) p16: mark#(and(X1,X2)) -> mark#(X1) p17: mark#(s(X)) -> mark#(X) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p7, p8, p9, p10, p13, p14, p15, p16, p17} {p3, p4} {p5, p6} {p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2,X3)) -> mark#(X1) p2: mark#(s(X)) -> mark#(X) p3: mark#(and(X1,X2)) -> mark#(X1) p4: mark#(plus(X1,X2)) -> mark#(X2) p5: mark#(plus(X1,X2)) -> mark#(X1) p6: mark#(U41(X1,X2,X3)) -> mark#(X1) p7: mark#(U31(X1,X2)) -> mark#(X1) p8: mark#(U22(X)) -> mark#(X) p9: mark#(U21(X1,X2)) -> mark#(X1) p10: mark#(U13(X)) -> mark#(X) p11: mark#(U12(X1,X2)) -> mark#(X1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{4, x1 + 3} U11_A(x1,x2,x3) = max{x1, x2 + 1, x3} s_A(x1) = max{1, x1} and_A(x1,x2) = max{x1, x2} plus_A(x1,x2) = max{x1 + 1, x2} U41_A(x1,x2,x3) = max{x1, x2, x3} U31_A(x1,x2) = max{x1, x2} U22_A(x1) = max{1, x1} U21_A(x1,x2) = max{x1, x2} U13_A(x1) = max{3, x1 + 2} U12_A(x1,x2) = max{x1, x2} precedence: mark# = U11 = s = and = plus = U41 = U31 = U22 = U21 = U13 = U12 partial status: pi(mark#) = [1] pi(U11) = [1, 2, 3] pi(s) = [1] pi(and) = [1, 2] pi(plus) = [1, 2] pi(U41) = [1, 2, 3] pi(U31) = [1, 2] pi(U22) = [1] pi(U21) = [1, 2] pi(U13) = [1] pi(U12) = [1, 2] 2. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 U11_A(x1,x2,x3) = max{x1, x2, x3} s_A(x1) = x1 + 1 and_A(x1,x2) = max{x1, x2} plus_A(x1,x2) = max{x1, x2} U41_A(x1,x2,x3) = max{x1, x2, x3} U31_A(x1,x2) = max{x1, x2} U22_A(x1) = x1 U21_A(x1,x2) = max{x1, x2} U13_A(x1) = x1 U12_A(x1,x2) = max{x1, x2} precedence: mark# = U11 = s = and = plus = U41 = U31 = U22 = U21 = U13 = U12 partial status: pi(mark#) = [1] pi(U11) = [1, 2, 3] pi(s) = [1] pi(and) = [1, 2] pi(plus) = [1, 2] pi(U41) = [1, 2, 3] pi(U31) = [1, 2] pi(U22) = [1] pi(U21) = [1, 2] pi(U13) = [1] pi(U12) = [1, 2] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNat#(s(V1)) -> a__U21#(a__isNatKind(V1),V1) p2: a__U21#(tt(),V1) -> a__isNat#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__isNat#_A(x1) = ((1,0),(1,0)) x1 + (3,1) s_A(x1) = ((1,0),(0,0)) x1 + (5,4) a__U21#_A(x1,x2) = ((1,0),(1,0)) x2 + (4,5) a__isNatKind_A(x1) = ((1,0),(1,0)) x1 + (7,7) tt_A() = (0,9) a__U11_A(x1,x2,x3) = (3,1) a__U12_A(x1,x2) = (2,11) a__isNat_A(x1) = (8,8) a__U13_A(x1) = (1,10) a__U21_A(x1,x2) = (0,11) a__U22_A(x1) = (0,10) a__U31_A(x1,x2) = ((1,0),(0,0)) x2 + (1,11) mark_A(x1) = ((1,0),(1,0)) x1 + (0,11) a__U41_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (17,15) a__plus_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (12,11) |0|_A() = (0,1) plus_A(x1,x2) = x1 + ((1,0),(1,0)) x2 + (12,10) a__and_A(x1,x2) = ((1,0),(0,0)) x2 + (11,22) isNatKind_A(x1) = ((1,0),(0,0)) x1 + (7,0) and_A(x1,x2) = ((1,0),(0,0)) x2 + (11,0) isNat_A(x1) = (8,5) U11_A(x1,x2,x3) = (3,0) U12_A(x1,x2) = (2,0) U13_A(x1) = (1,0) U21_A(x1,x2) = (0,11) U22_A(x1) = (0,0) U31_A(x1,x2) = ((1,0),(0,0)) x2 + (1,0) U41_A(x1,x2,x3) = ((1,0),(0,0)) x2 + ((1,0),(0,0)) x3 + (17,14) precedence: a__isNat = a__U31 = mark = a__plus > a__isNatKind > a__U11 > a__U12 > a__and > a__U13 > tt > |0| > a__U41 = plus > s > a__U21# = U11 = U12 > a__isNat# > isNatKind = U13 > a__U21 > U31 > U21 > and = U41 > isNat > a__U22 > U22 partial status: pi(a__isNat#) = [] pi(s) = [] pi(a__U21#) = [] pi(a__isNatKind) = [] pi(tt) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__isNat) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(mark) = [] pi(a__U41) = [] pi(a__plus) = [] pi(|0|) = [] pi(plus) = [] pi(a__and) = [] pi(isNatKind) = [] pi(and) = [] pi(isNat) = [] pi(U11) = [] pi(U12) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(U31) = [] pi(U41) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__isNat#_A(x1) = (3,5) s_A(x1) = (3,6) a__U21#_A(x1,x2) = (2,1) a__isNatKind_A(x1) = (2,4) tt_A() = (0,0) a__U11_A(x1,x2,x3) = (4,0) a__U12_A(x1,x2) = (3,2) a__isNat_A(x1) = (4,0) a__U13_A(x1) = (2,1) a__U21_A(x1,x2) = (4,0) a__U22_A(x1) = (3,5) a__U31_A(x1,x2) = (8,2) mark_A(x1) = (7,4) a__U41_A(x1,x2,x3) = (6,5) a__plus_A(x1,x2) = (5,3) |0|_A() = (1,1) plus_A(x1,x2) = (5,1) a__and_A(x1,x2) = (2,2) isNatKind_A(x1) = (0,2) and_A(x1,x2) = (1,1) isNat_A(x1) = (3,0) U11_A(x1,x2,x3) = (4,0) U12_A(x1,x2) = (1,0) U13_A(x1) = (0,0) U21_A(x1,x2) = (0,0) U22_A(x1) = (1,0) U31_A(x1,x2) = (0,0) U41_A(x1,x2,x3) = (1,1) precedence: a__U12 > U21 > U13 > a__U22 > U41 > s = isNat > a__U11 = a__isNat > U11 > isNatKind > a__isNat# > a__U21# = a__U41 > a__plus = U12 > a__U31 > U31 > U22 > a__isNatKind = mark = |0| = a__and = and > a__U13 > plus > a__U21 > tt partial status: pi(a__isNat#) = [] pi(s) = [] pi(a__U21#) = [] pi(a__isNatKind) = [] pi(tt) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__isNat) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(mark) = [] pi(a__U41) = [] pi(a__plus) = [] pi(|0|) = [] pi(plus) = [] pi(a__and) = [] pi(isNatKind) = [] pi(and) = [] pi(isNat) = [] pi(U11) = [] pi(U12) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(U31) = [] pi(U41) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__isNatKind#(plus(V1,V2)) -> a__isNatKind#(V1) p2: a__isNatKind#(s(V1)) -> a__isNatKind#(V1) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a__isNatKind#_A(x1) = x1 + 3 plus_A(x1,x2) = max{x1, x2} s_A(x1) = max{1, x1} precedence: a__isNatKind# = plus = s partial status: pi(a__isNatKind#) = [1] pi(plus) = [1, 2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: a__isNatKind#_A(x1) = x1 + 1 plus_A(x1,x2) = max{x1, x2} s_A(x1) = x1 precedence: a__isNatKind# = plus = s partial status: pi(a__isNatKind#) = [1] pi(plus) = [1, 2] pi(s) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U41#(tt(),M,N) -> a__plus#(mark(N),mark(M)) p2: a__plus#(N,s(M)) -> a__U41#(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) and R consists of: r1: a__U11(tt(),V1,V2) -> a__U12(a__isNat(V1),V2) r2: a__U12(tt(),V2) -> a__U13(a__isNat(V2)) r3: a__U13(tt()) -> tt() r4: a__U21(tt(),V1) -> a__U22(a__isNat(V1)) r5: a__U22(tt()) -> tt() r6: a__U31(tt(),N) -> mark(N) r7: a__U41(tt(),M,N) -> s(a__plus(mark(N),mark(M))) r8: a__and(tt(),X) -> mark(X) r9: a__isNat(|0|()) -> tt() r10: a__isNat(plus(V1,V2)) -> a__U11(a__and(a__isNatKind(V1),isNatKind(V2)),V1,V2) r11: a__isNat(s(V1)) -> a__U21(a__isNatKind(V1),V1) r12: a__isNatKind(|0|()) -> tt() r13: a__isNatKind(plus(V1,V2)) -> a__and(a__isNatKind(V1),isNatKind(V2)) r14: a__isNatKind(s(V1)) -> a__isNatKind(V1) r15: a__plus(N,|0|()) -> a__U31(a__and(a__isNat(N),isNatKind(N)),N) r16: a__plus(N,s(M)) -> a__U41(a__and(a__and(a__isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) r17: mark(U11(X1,X2,X3)) -> a__U11(mark(X1),X2,X3) r18: mark(U12(X1,X2)) -> a__U12(mark(X1),X2) r19: mark(isNat(X)) -> a__isNat(X) r20: mark(U13(X)) -> a__U13(mark(X)) r21: mark(U21(X1,X2)) -> a__U21(mark(X1),X2) r22: mark(U22(X)) -> a__U22(mark(X)) r23: mark(U31(X1,X2)) -> a__U31(mark(X1),X2) r24: mark(U41(X1,X2,X3)) -> a__U41(mark(X1),X2,X3) r25: mark(plus(X1,X2)) -> a__plus(mark(X1),mark(X2)) r26: mark(and(X1,X2)) -> a__and(mark(X1),X2) r27: mark(isNatKind(X)) -> a__isNatKind(X) r28: mark(tt()) -> tt() r29: mark(s(X)) -> s(mark(X)) r30: mark(|0|()) -> |0|() r31: a__U11(X1,X2,X3) -> U11(X1,X2,X3) r32: a__U12(X1,X2) -> U12(X1,X2) r33: a__isNat(X) -> isNat(X) r34: a__U13(X) -> U13(X) r35: a__U21(X1,X2) -> U21(X1,X2) r36: a__U22(X) -> U22(X) r37: a__U31(X1,X2) -> U31(X1,X2) r38: a__U41(X1,X2,X3) -> U41(X1,X2,X3) r39: a__plus(X1,X2) -> plus(X1,X2) r40: a__and(X1,X2) -> and(X1,X2) r41: a__isNatKind(X) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__U41#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (38,24) tt_A() = (11,21) a__plus#_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (12,127) mark_A(x1) = ((1,0),(1,1)) x1 + (0,34) s_A(x1) = ((1,0),(1,0)) x1 + (39,1) a__and_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,1) a__isNat_A(x1) = (17,51) isNatKind_A(x1) = ((1,0),(1,1)) x1 + (1,19) and_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,1) isNat_A(x1) = (17,0) a__U11_A(x1,x2,x3) = (14,51) a__U12_A(x1,x2) = (13,50) a__U13_A(x1) = (12,49) a__U21_A(x1,x2) = ((0,0),(1,0)) x1 + (16,2) a__U22_A(x1) = (11,35) a__U31_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (1,36) a__U41_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (49,36) a__plus_A(x1,x2) = ((1,0),(1,0)) x1 + x2 + (10,36) a__isNatKind_A(x1) = ((1,0),(1,1)) x1 + (1,51) |0|_A() = (10,20) plus_A(x1,x2) = ((1,0),(0,0)) x1 + x2 + (10,35) U11_A(x1,x2,x3) = (14,34) U12_A(x1,x2) = (13,50) U13_A(x1) = (12,3) U21_A(x1,x2) = ((0,0),(1,0)) x1 + (16,1) U22_A(x1) = (11,35) U31_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (1,35) U41_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(0,0)) x3 + (49,35) precedence: a__and > mark = a__U21 = |0| > a__U11 = U11 > a__plus = plus > a__U12 = a__U41 = U12 = U41 > a__U13 = U13 > tt = a__plus# = s = a__isNat = a__U22 = a__isNatKind = U21 > a__U41# > isNatKind = isNat = U22 > and > U31 > a__U31 partial status: pi(a__U41#) = [] pi(tt) = [] pi(a__plus#) = [2] pi(mark) = [] pi(s) = [] pi(a__and) = [1] pi(a__isNat) = [] pi(isNatKind) = [1] pi(and) = [2] pi(isNat) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [2] pi(a__isNatKind) = [] pi(|0|) = [] pi(plus) = [] pi(U11) = [] pi(U12) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(U31) = [2] pi(U41) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__U41#_A(x1,x2,x3) = (5,9) tt_A() = (3,1) a__plus#_A(x1,x2) = ((1,0),(1,1)) x2 + (1,1) mark_A(x1) = (3,4) s_A(x1) = (7,10) a__and_A(x1,x2) = ((1,0),(0,0)) x1 a__isNat_A(x1) = (7,19) isNatKind_A(x1) = (1,1) and_A(x1,x2) = (3,0) isNat_A(x1) = (1,0) a__U11_A(x1,x2,x3) = (6,6) a__U12_A(x1,x2) = (5,5) a__U13_A(x1) = (4,4) a__U21_A(x1,x2) = (7,5) a__U22_A(x1) = (3,2) a__U31_A(x1,x2) = (3,12) a__U41_A(x1,x2,x3) = (8,11) a__plus_A(x1,x2) = ((0,0),(1,0)) x2 + (9,9) a__isNatKind_A(x1) = (3,2) |0|_A() = (2,5) plus_A(x1,x2) = (5,3) U11_A(x1,x2,x3) = (0,0) U12_A(x1,x2) = (0,0) U13_A(x1) = (0,0) U21_A(x1,x2) = (3,0) U22_A(x1) = (0,1) U31_A(x1,x2) = (0,13) U41_A(x1,x2,x3) = (1,12) precedence: a__U41# = a__plus# > isNat > and > U21 > a__U13 > mark = a__and = a__U31 = a__isNatKind = |0| = U31 > a__isNat = a__U21 > U22 > a__U22 > a__plus > a__U41 > s > tt > U13 > isNatKind > a__U11 > a__U12 > U12 > plus = U41 > U11 partial status: pi(a__U41#) = [] pi(tt) = [] pi(a__plus#) = [2] pi(mark) = [] pi(s) = [] pi(a__and) = [] pi(a__isNat) = [] pi(isNatKind) = [] pi(and) = [] pi(isNat) = [] pi(a__U11) = [] pi(a__U12) = [] pi(a__U13) = [] pi(a__U21) = [] pi(a__U22) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__plus) = [] pi(a__isNatKind) = [] pi(|0|) = [] pi(plus) = [] pi(U11) = [] pi(U12) = [] pi(U13) = [] pi(U21) = [] pi(U22) = [] pi(U31) = [] pi(U41) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.