YES We show the termination of the TRS R: a(f(),a(f(),x)) -> a(x,x) a(h(),x) -> a(f(),a(g(),a(f(),x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(f(),a(f(),x)) -> a#(x,x) p2: a#(h(),x) -> a#(f(),a(g(),a(f(),x))) p3: a#(h(),x) -> a#(g(),a(f(),x)) p4: a#(h(),x) -> a#(f(),x) and R consists of: r1: a(f(),a(f(),x)) -> a(x,x) r2: a(h(),x) -> a(f(),a(g(),a(f(),x))) The estimated dependency graph contains the following SCCs: {p1, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(f(),a(f(),x)) -> a#(x,x) p2: a#(h(),x) -> a#(f(),x) and R consists of: r1: a(f(),a(f(),x)) -> a(x,x) r2: a(h(),x) -> a(f(),a(g(),a(f(),x))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a#_A(x1,x2) = max{x1 + 3, x2 + 3} f_A = 0 a_A(x1,x2) = max{x1 + 1, x2 + 4} h_A = 0 precedence: a = h > a# = f partial status: pi(a#) = [1, 2] pi(f) = [] pi(a) = [2] pi(h) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: a#_A(x1,x2) = max{x1 + 2, x2} f_A = 2 a_A(x1,x2) = x2 + 2 h_A = 1 precedence: a > a# = f > h partial status: pi(a#) = [2] pi(f) = [] pi(a) = [2] pi(h) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.