YES We show the termination of the TRS R: app(nil(),k) -> k app(l,nil()) -> l app(cons(x,l),k) -> cons(x,app(l,k)) sum(cons(x,nil())) -> cons(x,nil()) sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) pred(cons(s(x),nil())) -> cons(x,nil()) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(cons(x,l),k) -> app#(l,k) p2: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) p3: sum#(cons(x,cons(y,l))) -> plus#(x,y) p4: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) p5: sum#(app(l,cons(x,cons(y,k)))) -> app#(l,sum(cons(x,cons(y,k)))) p6: sum#(app(l,cons(x,cons(y,k)))) -> sum#(cons(x,cons(y,k))) p7: plus#(s(x),y) -> plus#(x,y) p8: sum#(plus(cons(|0|(),x),cons(y,l))) -> pred#(sum(cons(s(x),cons(y,l)))) p9: sum#(plus(cons(|0|(),x),cons(y,l))) -> sum#(cons(s(x),cons(y,l))) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) The estimated dependency graph contains the following SCCs: {p4} {p1} {p2} {p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k))))) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) The set of usable rules consists of r1, r2, r3, r4, r5, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: sum#_A(x1) = x1 + (1,0) app_A(x1,x2) = x1 + x2 + (5,3) cons_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (4,2) sum_A(x1) = ((0,0),(0,1)) x1 + (6,0) nil_A() = (1,1) plus_A(x1,x2) = ((0,0),(0,1)) x1 + x2 + (2,0) |0|_A() = (1,1) s_A(x1) = (1,1) precedence: sum = nil = plus > |0| = s > app > sum# = cons partial status: pi(sum#) = [1] pi(app) = [1, 2] pi(cons) = [2] pi(sum) = [] pi(nil) = [] pi(plus) = [2] pi(|0|) = [] pi(s) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: sum#_A(x1) = x1 + (0,1) app_A(x1,x2) = x1 + (4,1) cons_A(x1,x2) = (1,1) sum_A(x1) = (3,2) nil_A() = (2,1) plus_A(x1,x2) = x2 + (4,3) |0|_A() = (1,1) s_A(x1) = (1,1) precedence: nil = plus > |0| > sum# = app = cons = sum = s partial status: pi(sum#) = [] pi(app) = [] pi(cons) = [] pi(sum) = [] pi(nil) = [] pi(plus) = [2] pi(|0|) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(cons(x,l),k) -> app#(l,k) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: app#_A(x1,x2) = x1 + 1 cons_A(x1,x2) = max{x1, x2 + 1} precedence: app# = cons partial status: pi(app#) = [1] pi(cons) = [1, 2] 2. weighted path order base order: max/plus interpretations on natural numbers: app#_A(x1,x2) = max{0, x1 - 1} cons_A(x1,x2) = max{x1, x2} precedence: app# = cons partial status: pi(app#) = [] pi(cons) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l)) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) The set of usable rules consists of r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: sum#_A(x1) = x1 + 9 cons_A(x1,x2) = x2 + 2 plus_A(x1,x2) = max{x1 + 8, x2 + 8} |0|_A = 0 s_A(x1) = max{7, x1} precedence: sum# = cons = plus > |0| = s partial status: pi(sum#) = [] pi(cons) = [2] pi(plus) = [1, 2] pi(|0|) = [] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: sum#_A(x1) = 19 cons_A(x1,x2) = max{11, x2 + 7} plus_A(x1,x2) = max{12, x1 - 2, x2 + 1} |0|_A = 0 s_A(x1) = max{13, x1 + 1} precedence: sum# = cons = plus = |0| = s partial status: pi(sum#) = [] pi(cons) = [2] pi(plus) = [] pi(|0|) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: app(nil(),k) -> k r2: app(l,nil()) -> l r3: app(cons(x,l),k) -> cons(x,app(l,k)) r4: sum(cons(x,nil())) -> cons(x,nil()) r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) r7: plus(|0|(),y) -> y r8: plus(s(x),y) -> s(plus(x,y)) r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) r10: pred(cons(s(x),nil())) -> cons(x,nil()) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: plus#_A(x1,x2) = max{2, x1 + 1, x2} s_A(x1) = max{1, x1} precedence: plus# = s partial status: pi(plus#) = [1, 2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: plus#_A(x1,x2) = max{x1 - 1, x2 + 1} s_A(x1) = x1 precedence: plus# = s partial status: pi(plus#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.