YES We show the termination of the TRS R: le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) pred(s(x)) -> x minus(x,|0|()) -> x minus(x,s(y)) -> pred(minus(x,y)) gcd(|0|(),y) -> y gcd(s(x),|0|()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) p2: minus#(x,s(y)) -> pred#(minus(x,y)) p3: minus#(x,s(y)) -> minus#(x,y) p4: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) p5: gcd#(s(x),s(y)) -> le#(y,x) p6: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)) p7: if_gcd#(true(),s(x),s(y)) -> minus#(x,y) p8: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x)) p9: if_gcd#(false(),s(x),s(y)) -> minus#(y,x) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: gcd(|0|(),y) -> y r8: gcd(s(x),|0|()) -> s(x) r9: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r10: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r11: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The estimated dependency graph contains the following SCCs: {p4, p6, p8} {p1} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x)) p2: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) p3: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: gcd(|0|(),y) -> y r8: gcd(s(x),|0|()) -> s(x) r9: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r10: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r11: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: if_gcd#_A(x1,x2,x3) = max{10, x1 - 5, x2 + 6, x3 + 5} false_A = 24 s_A(x1) = max{12, x1 + 10} gcd#_A(x1,x2) = max{9, x1 + 7, x2 + 5} minus_A(x1,x2) = max{11, x1 + 7, x2 + 8} le_A(x1,x2) = max{19, x1 + 15} true_A = 18 pred_A(x1) = max{1, x1} |0|_A = 25 precedence: if_gcd# = gcd# = true = |0| > minus > false = le > s = pred partial status: pi(if_gcd#) = [] pi(false) = [] pi(s) = [] pi(gcd#) = [] pi(minus) = [1, 2] pi(le) = [1] pi(true) = [] pi(pred) = [1] pi(|0|) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: if_gcd#_A(x1,x2,x3) = 12 false_A = 6 s_A(x1) = 0 gcd#_A(x1,x2) = 12 minus_A(x1,x2) = max{x1 + 16, x2 + 16} le_A(x1,x2) = max{7, x1 + 5} true_A = 9 pred_A(x1) = 15 |0|_A = 5 precedence: false = le > true > if_gcd# = gcd# > s = minus = pred = |0| partial status: pi(if_gcd#) = [] pi(false) = [] pi(s) = [] pi(gcd#) = [] pi(minus) = [] pi(le) = [1] pi(true) = [] pi(pred) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) p2: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: gcd(|0|(),y) -> y r8: gcd(s(x),|0|()) -> s(x) r9: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r10: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r11: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)) p2: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: gcd(|0|(),y) -> y r8: gcd(s(x),|0|()) -> s(x) r9: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r10: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r11: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: gcd#_A(x1,x2) = x1 + 30 s_A(x1) = max{14, x1 + 5} if_gcd#_A(x1,x2,x3) = max{x1, x2 + 29} le_A(x1,x2) = 41 true_A = 40 minus_A(x1,x2) = x1 + 3 pred_A(x1) = max{0, x1 - 1} |0|_A = 47 false_A = 15 precedence: if_gcd# = pred > minus = |0| > false > le > true > gcd# = s partial status: pi(gcd#) = [1] pi(s) = [] pi(if_gcd#) = [1, 2] pi(le) = [] pi(true) = [] pi(minus) = [1] pi(pred) = [] pi(|0|) = [] pi(false) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: gcd#_A(x1,x2) = x1 + 15 s_A(x1) = 0 if_gcd#_A(x1,x2,x3) = max{x1 + 10, x2 + 15} le_A(x1,x2) = 4 true_A = 27 minus_A(x1,x2) = 22 pred_A(x1) = 22 |0|_A = 5 false_A = 6 precedence: true = minus > gcd# = s = if_gcd# = le = pred = |0| = false partial status: pi(gcd#) = [] pi(s) = [] pi(if_gcd#) = [1] pi(le) = [] pi(true) = [] pi(minus) = [] pi(pred) = [] pi(|0|) = [] pi(false) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: gcd(|0|(),y) -> y r8: gcd(s(x),|0|()) -> s(x) r9: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r10: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r11: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: le#_A(x1,x2) = max{2, x1 - 1, x2 + 1} s_A(x1) = max{1, x1} precedence: le# = s partial status: pi(le#) = [2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: le#_A(x1,x2) = 0 s_A(x1) = max{2, x1} precedence: le# = s partial status: pi(le#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(x,s(y)) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: gcd(|0|(),y) -> y r8: gcd(s(x),|0|()) -> s(x) r9: gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) r10: if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) r11: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = max{2, x1, x2 + 1} s_A(x1) = max{1, x1} precedence: minus# = s partial status: pi(minus#) = [1, 2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = max{x1, x2 - 1} s_A(x1) = x1 precedence: minus# = s partial status: pi(minus#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.