YES We show the termination of the TRS R: g(s(x),s(y)) -> if(and(f(s(x)),f(s(y))),t(g(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|()))))),g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) n(|0|(),y) -> |0|() n(x,|0|()) -> |0|() n(s(x),s(y)) -> s(n(x,y)) m(|0|(),y) -> y m(x,|0|()) -> x m(s(x),s(y)) -> s(m(x,y)) k(|0|(),s(y)) -> |0|() k(s(x),s(y)) -> s(k(minus(x,y),s(y))) t(x) -> p(x,x) p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x)) p(|0|(),y) -> y p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y)))) minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) id(x) -> x if(true(),x,y) -> x if(false(),x,y) -> y not(x) -> if(x,false(),true()) and(x,false()) -> false() and(true(),true()) -> true() f(|0|()) -> true() f(s(x)) -> h(x) h(|0|()) -> false() h(s(x)) -> f(x) gt(s(x),|0|()) -> true() gt(|0|(),y) -> false() gt(s(x),s(y)) -> gt(x,y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: g#(s(x),s(y)) -> if#(and(f(s(x)),f(s(y))),t(g(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|()))))),g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) p2: g#(s(x),s(y)) -> and#(f(s(x)),f(s(y))) p3: g#(s(x),s(y)) -> f#(s(x)) p4: g#(s(x),s(y)) -> f#(s(y)) p5: g#(s(x),s(y)) -> t#(g(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|()))))) p6: g#(s(x),s(y)) -> g#(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|())))) p7: g#(s(x),s(y)) -> k#(minus(m(x,y),n(x,y)),s(s(|0|()))) p8: g#(s(x),s(y)) -> minus#(m(x,y),n(x,y)) p9: g#(s(x),s(y)) -> m#(x,y) p10: g#(s(x),s(y)) -> n#(x,y) p11: g#(s(x),s(y)) -> k#(n(s(x),s(y)),s(s(|0|()))) p12: g#(s(x),s(y)) -> n#(s(x),s(y)) p13: g#(s(x),s(y)) -> g#(minus(m(x,y),n(x,y)),n(s(x),s(y))) p14: n#(s(x),s(y)) -> n#(x,y) p15: m#(s(x),s(y)) -> m#(x,y) p16: k#(s(x),s(y)) -> k#(minus(x,y),s(y)) p17: k#(s(x),s(y)) -> minus#(x,y) p18: t#(x) -> p#(x,x) p19: p#(s(x),s(y)) -> p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))) p20: p#(s(x),s(y)) -> if#(gt(x,y),x,y) p21: p#(s(x),s(y)) -> gt#(x,y) p22: p#(s(x),s(y)) -> if#(not(gt(x,y)),id(x),id(y)) p23: p#(s(x),s(y)) -> not#(gt(x,y)) p24: p#(s(x),s(y)) -> id#(x) p25: p#(s(x),s(y)) -> id#(y) p26: p#(s(x),x) -> p#(if(gt(x,x),id(x),id(x)),s(x)) p27: p#(s(x),x) -> if#(gt(x,x),id(x),id(x)) p28: p#(s(x),x) -> gt#(x,x) p29: p#(s(x),x) -> id#(x) p30: p#(id(x),s(y)) -> p#(x,if(gt(s(y),y),y,s(y))) p31: p#(id(x),s(y)) -> if#(gt(s(y),y),y,s(y)) p32: p#(id(x),s(y)) -> gt#(s(y),y) p33: minus#(s(x),s(y)) -> minus#(x,y) p34: not#(x) -> if#(x,false(),true()) p35: f#(s(x)) -> h#(x) p36: h#(s(x)) -> f#(x) p37: gt#(s(x),s(y)) -> gt#(x,y) and R consists of: r1: g(s(x),s(y)) -> if(and(f(s(x)),f(s(y))),t(g(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|()))))),g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) r2: n(|0|(),y) -> |0|() r3: n(x,|0|()) -> |0|() r4: n(s(x),s(y)) -> s(n(x,y)) r5: m(|0|(),y) -> y r6: m(x,|0|()) -> x r7: m(s(x),s(y)) -> s(m(x,y)) r8: k(|0|(),s(y)) -> |0|() r9: k(s(x),s(y)) -> s(k(minus(x,y),s(y))) r10: t(x) -> p(x,x) r11: p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r12: p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x)) r13: p(|0|(),y) -> y r14: p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y)))) r15: minus(x,|0|()) -> x r16: minus(s(x),s(y)) -> minus(x,y) r17: id(x) -> x r18: if(true(),x,y) -> x r19: if(false(),x,y) -> y r20: not(x) -> if(x,false(),true()) r21: and(x,false()) -> false() r22: and(true(),true()) -> true() r23: f(|0|()) -> true() r24: f(s(x)) -> h(x) r25: h(|0|()) -> false() r26: h(s(x)) -> f(x) r27: gt(s(x),|0|()) -> true() r28: gt(|0|(),y) -> false() r29: gt(s(x),s(y)) -> gt(x,y) The estimated dependency graph contains the following SCCs: {p6, p13} {p35, p36} {p16} {p33} {p15} {p14} {p19, p26, p30} {p37} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(s(x),s(y)) -> g#(minus(m(x,y),n(x,y)),n(s(x),s(y))) p2: g#(s(x),s(y)) -> g#(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|())))) and R consists of: r1: g(s(x),s(y)) -> if(and(f(s(x)),f(s(y))),t(g(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|()))))),g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) r2: n(|0|(),y) -> |0|() r3: n(x,|0|()) -> |0|() r4: n(s(x),s(y)) -> s(n(x,y)) r5: m(|0|(),y) -> y r6: m(x,|0|()) -> x r7: m(s(x),s(y)) -> s(m(x,y)) r8: k(|0|(),s(y)) -> |0|() r9: k(s(x),s(y)) -> s(k(minus(x,y),s(y))) r10: t(x) -> p(x,x) r11: p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r12: p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x)) r13: p(|0|(),y) -> y r14: p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y)))) r15: minus(x,|0|()) -> x r16: minus(s(x),s(y)) -> minus(x,y) r17: id(x) -> x r18: if(true(),x,y) -> x r19: if(false(),x,y) -> y r20: not(x) -> if(x,false(),true()) r21: and(x,false()) -> false() r22: and(true(),true()) -> true() r23: f(|0|()) -> true() r24: f(s(x)) -> h(x) r25: h(|0|()) -> false() r26: h(s(x)) -> f(x) r27: gt(s(x),|0|()) -> true() r28: gt(|0|(),y) -> false() r29: gt(s(x),s(y)) -> gt(x,y) The set of usable rules consists of r2, r3, r4, r5, r6, r7, r8, r9, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: g#_A(x1,x2) = max{x1 + 59, x2 + 48} s_A(x1) = max{47, x1 + 21} minus_A(x1,x2) = max{26, x1} m_A(x1,x2) = max{x1 + 5, x2 + 5} n_A(x1,x2) = x1 + 6 k_A(x1,x2) = x1 + 4 |0|_A = 1 precedence: g# = m = n = k > s = minus > |0| partial status: pi(g#) = [] pi(s) = [] pi(minus) = [1] pi(m) = [1, 2] pi(n) = [1] pi(k) = [] pi(|0|) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: g#_A(x1,x2) = 21 s_A(x1) = 28 minus_A(x1,x2) = max{2, x1} m_A(x1,x2) = max{17, x2 + 14} n_A(x1,x2) = max{8, x1 + 5} k_A(x1,x2) = 0 |0|_A = 4 precedence: minus > |0| > g# = s = m = n = k partial status: pi(g#) = [] pi(s) = [] pi(minus) = [] pi(m) = [2] pi(n) = [1] pi(k) = [] pi(|0|) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: g#(s(x),s(y)) -> g#(minus(m(x,y),n(x,y)),n(s(x),s(y))) and R consists of: r1: g(s(x),s(y)) -> if(and(f(s(x)),f(s(y))),t(g(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|()))))),g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) r2: n(|0|(),y) -> |0|() r3: n(x,|0|()) -> |0|() r4: n(s(x),s(y)) -> s(n(x,y)) r5: m(|0|(),y) -> y r6: m(x,|0|()) -> x r7: m(s(x),s(y)) -> s(m(x,y)) r8: k(|0|(),s(y)) -> |0|() r9: k(s(x),s(y)) -> s(k(minus(x,y),s(y))) r10: t(x) -> p(x,x) r11: p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r12: p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x)) r13: p(|0|(),y) -> y r14: p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y)))) r15: minus(x,|0|()) -> x r16: minus(s(x),s(y)) -> minus(x,y) r17: id(x) -> x r18: if(true(),x,y) -> x r19: if(false(),x,y) -> y r20: not(x) -> if(x,false(),true()) r21: and(x,false()) -> false() r22: and(true(),true()) -> true() r23: f(|0|()) -> true() r24: f(s(x)) -> h(x) r25: h(|0|()) -> false() r26: h(s(x)) -> f(x) r27: gt(s(x),|0|()) -> true() r28: gt(|0|(),y) -> false() r29: gt(s(x),s(y)) -> gt(x,y) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(s(x),s(y)) -> g#(minus(m(x,y),n(x,y)),n(s(x),s(y))) and R consists of: r1: g(s(x),s(y)) -> if(and(f(s(x)),f(s(y))),t(g(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|()))))),g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) r2: n(|0|(),y) -> |0|() r3: n(x,|0|()) -> |0|() r4: n(s(x),s(y)) -> s(n(x,y)) r5: m(|0|(),y) -> y r6: m(x,|0|()) -> x r7: m(s(x),s(y)) -> s(m(x,y)) r8: k(|0|(),s(y)) -> |0|() r9: k(s(x),s(y)) -> s(k(minus(x,y),s(y))) r10: t(x) -> p(x,x) r11: p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r12: p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x)) r13: p(|0|(),y) -> y r14: p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y)))) r15: minus(x,|0|()) -> x r16: minus(s(x),s(y)) -> minus(x,y) r17: id(x) -> x r18: if(true(),x,y) -> x r19: if(false(),x,y) -> y r20: not(x) -> if(x,false(),true()) r21: and(x,false()) -> false() r22: and(true(),true()) -> true() r23: f(|0|()) -> true() r24: f(s(x)) -> h(x) r25: h(|0|()) -> false() r26: h(s(x)) -> f(x) r27: gt(s(x),|0|()) -> true() r28: gt(|0|(),y) -> false() r29: gt(s(x),s(y)) -> gt(x,y) The set of usable rules consists of r2, r3, r4, r5, r6, r7, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: g#_A(x1,x2) = max{x1 + 15, x2 + 11} s_A(x1) = max{20, x1 + 14} minus_A(x1,x2) = max{15, x1 + 2} m_A(x1,x2) = max{x1 + 7, x2 + 7} n_A(x1,x2) = x1 + 3 |0|_A = 2 precedence: minus = m = n > g# = s = |0| partial status: pi(g#) = [1, 2] pi(s) = [1] pi(minus) = [] pi(m) = [1, 2] pi(n) = [1] pi(|0|) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: g#_A(x1,x2) = max{0, x1 - 2, x2 - 1} s_A(x1) = max{14, x1 + 11} minus_A(x1,x2) = 16 m_A(x1,x2) = max{8, x1 - 12, x2 + 4} n_A(x1,x2) = max{24, x1 + 10} |0|_A = 9 precedence: g# = s = minus = m = n = |0| partial status: pi(g#) = [] pi(s) = [1] pi(minus) = [] pi(m) = [2] pi(n) = [1] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x)) -> h#(x) p2: h#(s(x)) -> f#(x) and R consists of: r1: g(s(x),s(y)) -> if(and(f(s(x)),f(s(y))),t(g(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|()))))),g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) r2: n(|0|(),y) -> |0|() r3: n(x,|0|()) -> |0|() r4: n(s(x),s(y)) -> s(n(x,y)) r5: m(|0|(),y) -> y r6: m(x,|0|()) -> x r7: m(s(x),s(y)) -> s(m(x,y)) r8: k(|0|(),s(y)) -> |0|() r9: k(s(x),s(y)) -> s(k(minus(x,y),s(y))) r10: t(x) -> p(x,x) r11: p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r12: p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x)) r13: p(|0|(),y) -> y r14: p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y)))) r15: minus(x,|0|()) -> x r16: minus(s(x),s(y)) -> minus(x,y) r17: id(x) -> x r18: if(true(),x,y) -> x r19: if(false(),x,y) -> y r20: not(x) -> if(x,false(),true()) r21: and(x,false()) -> false() r22: and(true(),true()) -> true() r23: f(|0|()) -> true() r24: f(s(x)) -> h(x) r25: h(|0|()) -> false() r26: h(s(x)) -> f(x) r27: gt(s(x),|0|()) -> true() r28: gt(|0|(),y) -> false() r29: gt(s(x),s(y)) -> gt(x,y) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = x1 + 4 s_A(x1) = x1 + 4 h#_A(x1) = x1 + 3 precedence: f# = s = h# partial status: pi(f#) = [] pi(s) = [] pi(h#) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = max{3, x1 + 2} s_A(x1) = x1 + 1 h#_A(x1) = x1 + 2 precedence: f# = s = h# partial status: pi(f#) = [] pi(s) = [1] pi(h#) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: k#(s(x),s(y)) -> k#(minus(x,y),s(y)) and R consists of: r1: g(s(x),s(y)) -> if(and(f(s(x)),f(s(y))),t(g(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|()))))),g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) r2: n(|0|(),y) -> |0|() r3: n(x,|0|()) -> |0|() r4: n(s(x),s(y)) -> s(n(x,y)) r5: m(|0|(),y) -> y r6: m(x,|0|()) -> x r7: m(s(x),s(y)) -> s(m(x,y)) r8: k(|0|(),s(y)) -> |0|() r9: k(s(x),s(y)) -> s(k(minus(x,y),s(y))) r10: t(x) -> p(x,x) r11: p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r12: p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x)) r13: p(|0|(),y) -> y r14: p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y)))) r15: minus(x,|0|()) -> x r16: minus(s(x),s(y)) -> minus(x,y) r17: id(x) -> x r18: if(true(),x,y) -> x r19: if(false(),x,y) -> y r20: not(x) -> if(x,false(),true()) r21: and(x,false()) -> false() r22: and(true(),true()) -> true() r23: f(|0|()) -> true() r24: f(s(x)) -> h(x) r25: h(|0|()) -> false() r26: h(s(x)) -> f(x) r27: gt(s(x),|0|()) -> true() r28: gt(|0|(),y) -> false() r29: gt(s(x),s(y)) -> gt(x,y) The set of usable rules consists of r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: k#_A(x1,x2) = max{3, x1 - 2} s_A(x1) = x1 + 9 minus_A(x1,x2) = max{4, x1 + 1} |0|_A = 0 precedence: k# = minus = |0| > s partial status: pi(k#) = [] pi(s) = [] pi(minus) = [1] pi(|0|) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: k#_A(x1,x2) = 2 s_A(x1) = 1 minus_A(x1,x2) = 3 |0|_A = 0 precedence: minus > k# > s = |0| partial status: pi(k#) = [] pi(s) = [] pi(minus) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: g(s(x),s(y)) -> if(and(f(s(x)),f(s(y))),t(g(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|()))))),g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) r2: n(|0|(),y) -> |0|() r3: n(x,|0|()) -> |0|() r4: n(s(x),s(y)) -> s(n(x,y)) r5: m(|0|(),y) -> y r6: m(x,|0|()) -> x r7: m(s(x),s(y)) -> s(m(x,y)) r8: k(|0|(),s(y)) -> |0|() r9: k(s(x),s(y)) -> s(k(minus(x,y),s(y))) r10: t(x) -> p(x,x) r11: p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r12: p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x)) r13: p(|0|(),y) -> y r14: p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y)))) r15: minus(x,|0|()) -> x r16: minus(s(x),s(y)) -> minus(x,y) r17: id(x) -> x r18: if(true(),x,y) -> x r19: if(false(),x,y) -> y r20: not(x) -> if(x,false(),true()) r21: and(x,false()) -> false() r22: and(true(),true()) -> true() r23: f(|0|()) -> true() r24: f(s(x)) -> h(x) r25: h(|0|()) -> false() r26: h(s(x)) -> f(x) r27: gt(s(x),|0|()) -> true() r28: gt(|0|(),y) -> false() r29: gt(s(x),s(y)) -> gt(x,y) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = max{2, x1 - 1, x2 + 1} s_A(x1) = max{1, x1} precedence: minus# = s partial status: pi(minus#) = [2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = 0 s_A(x1) = max{2, x1} precedence: minus# = s partial status: pi(minus#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: m#(s(x),s(y)) -> m#(x,y) and R consists of: r1: g(s(x),s(y)) -> if(and(f(s(x)),f(s(y))),t(g(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|()))))),g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) r2: n(|0|(),y) -> |0|() r3: n(x,|0|()) -> |0|() r4: n(s(x),s(y)) -> s(n(x,y)) r5: m(|0|(),y) -> y r6: m(x,|0|()) -> x r7: m(s(x),s(y)) -> s(m(x,y)) r8: k(|0|(),s(y)) -> |0|() r9: k(s(x),s(y)) -> s(k(minus(x,y),s(y))) r10: t(x) -> p(x,x) r11: p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r12: p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x)) r13: p(|0|(),y) -> y r14: p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y)))) r15: minus(x,|0|()) -> x r16: minus(s(x),s(y)) -> minus(x,y) r17: id(x) -> x r18: if(true(),x,y) -> x r19: if(false(),x,y) -> y r20: not(x) -> if(x,false(),true()) r21: and(x,false()) -> false() r22: and(true(),true()) -> true() r23: f(|0|()) -> true() r24: f(s(x)) -> h(x) r25: h(|0|()) -> false() r26: h(s(x)) -> f(x) r27: gt(s(x),|0|()) -> true() r28: gt(|0|(),y) -> false() r29: gt(s(x),s(y)) -> gt(x,y) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: m#_A(x1,x2) = max{2, x1 - 1, x2 + 1} s_A(x1) = max{1, x1} precedence: m# = s partial status: pi(m#) = [2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: m#_A(x1,x2) = 0 s_A(x1) = max{2, x1} precedence: m# = s partial status: pi(m#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: n#(s(x),s(y)) -> n#(x,y) and R consists of: r1: g(s(x),s(y)) -> if(and(f(s(x)),f(s(y))),t(g(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|()))))),g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) r2: n(|0|(),y) -> |0|() r3: n(x,|0|()) -> |0|() r4: n(s(x),s(y)) -> s(n(x,y)) r5: m(|0|(),y) -> y r6: m(x,|0|()) -> x r7: m(s(x),s(y)) -> s(m(x,y)) r8: k(|0|(),s(y)) -> |0|() r9: k(s(x),s(y)) -> s(k(minus(x,y),s(y))) r10: t(x) -> p(x,x) r11: p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r12: p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x)) r13: p(|0|(),y) -> y r14: p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y)))) r15: minus(x,|0|()) -> x r16: minus(s(x),s(y)) -> minus(x,y) r17: id(x) -> x r18: if(true(),x,y) -> x r19: if(false(),x,y) -> y r20: not(x) -> if(x,false(),true()) r21: and(x,false()) -> false() r22: and(true(),true()) -> true() r23: f(|0|()) -> true() r24: f(s(x)) -> h(x) r25: h(|0|()) -> false() r26: h(s(x)) -> f(x) r27: gt(s(x),|0|()) -> true() r28: gt(|0|(),y) -> false() r29: gt(s(x),s(y)) -> gt(x,y) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: n#_A(x1,x2) = max{2, x1 - 1, x2 + 1} s_A(x1) = max{1, x1} precedence: n# = s partial status: pi(n#) = [2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: n#_A(x1,x2) = 0 s_A(x1) = max{2, x1} precedence: n# = s partial status: pi(n#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: p#(s(x),s(y)) -> p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))) p2: p#(id(x),s(y)) -> p#(x,if(gt(s(y),y),y,s(y))) p3: p#(s(x),x) -> p#(if(gt(x,x),id(x),id(x)),s(x)) and R consists of: r1: g(s(x),s(y)) -> if(and(f(s(x)),f(s(y))),t(g(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|()))))),g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) r2: n(|0|(),y) -> |0|() r3: n(x,|0|()) -> |0|() r4: n(s(x),s(y)) -> s(n(x,y)) r5: m(|0|(),y) -> y r6: m(x,|0|()) -> x r7: m(s(x),s(y)) -> s(m(x,y)) r8: k(|0|(),s(y)) -> |0|() r9: k(s(x),s(y)) -> s(k(minus(x,y),s(y))) r10: t(x) -> p(x,x) r11: p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r12: p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x)) r13: p(|0|(),y) -> y r14: p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y)))) r15: minus(x,|0|()) -> x r16: minus(s(x),s(y)) -> minus(x,y) r17: id(x) -> x r18: if(true(),x,y) -> x r19: if(false(),x,y) -> y r20: not(x) -> if(x,false(),true()) r21: and(x,false()) -> false() r22: and(true(),true()) -> true() r23: f(|0|()) -> true() r24: f(s(x)) -> h(x) r25: h(|0|()) -> false() r26: h(s(x)) -> f(x) r27: gt(s(x),|0|()) -> true() r28: gt(|0|(),y) -> false() r29: gt(s(x),s(y)) -> gt(x,y) The set of usable rules consists of r17, r18, r19, r20, r27, r28, r29 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: p#_A(x1,x2) = max{4, x1, x2 - 12} s_A(x1) = max{47, x1 + 39} if_A(x1,x2,x3) = max{x1 + 18, x2, x3} gt_A(x1,x2) = max{22, x2 + 2} not_A(x1) = max{34, x1 + 18} id_A(x1) = max{47, x1 + 38} true_A = 33 false_A = 1 |0|_A = 34 precedence: s = true > p# = false > gt = not > if = id = |0| partial status: pi(p#) = [1] pi(s) = [1] pi(if) = [1, 2, 3] pi(gt) = [2] pi(not) = [1] pi(id) = [1] pi(true) = [] pi(false) = [] pi(|0|) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: p#_A(x1,x2) = max{87, x1 + 80} s_A(x1) = x1 + 47 if_A(x1,x2,x3) = 6 gt_A(x1,x2) = x2 + 15 not_A(x1) = x1 + 15 id_A(x1) = x1 + 46 true_A = 3 false_A = 14 |0|_A = 0 precedence: p# = s = if = gt = not = id = true = false > |0| partial status: pi(p#) = [1] pi(s) = [1] pi(if) = [] pi(gt) = [2] pi(not) = [1] pi(id) = [] pi(true) = [] pi(false) = [] pi(|0|) = [] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: gt#(s(x),s(y)) -> gt#(x,y) and R consists of: r1: g(s(x),s(y)) -> if(and(f(s(x)),f(s(y))),t(g(k(minus(m(x,y),n(x,y)),s(s(|0|()))),k(n(s(x),s(y)),s(s(|0|()))))),g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) r2: n(|0|(),y) -> |0|() r3: n(x,|0|()) -> |0|() r4: n(s(x),s(y)) -> s(n(x,y)) r5: m(|0|(),y) -> y r6: m(x,|0|()) -> x r7: m(s(x),s(y)) -> s(m(x,y)) r8: k(|0|(),s(y)) -> |0|() r9: k(s(x),s(y)) -> s(k(minus(x,y),s(y))) r10: t(x) -> p(x,x) r11: p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) r12: p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x)) r13: p(|0|(),y) -> y r14: p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y)))) r15: minus(x,|0|()) -> x r16: minus(s(x),s(y)) -> minus(x,y) r17: id(x) -> x r18: if(true(),x,y) -> x r19: if(false(),x,y) -> y r20: not(x) -> if(x,false(),true()) r21: and(x,false()) -> false() r22: and(true(),true()) -> true() r23: f(|0|()) -> true() r24: f(s(x)) -> h(x) r25: h(|0|()) -> false() r26: h(s(x)) -> f(x) r27: gt(s(x),|0|()) -> true() r28: gt(|0|(),y) -> false() r29: gt(s(x),s(y)) -> gt(x,y) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: gt#_A(x1,x2) = max{2, x1 - 1, x2 + 1} s_A(x1) = max{1, x1} precedence: gt# = s partial status: pi(gt#) = [2] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: gt#_A(x1,x2) = 0 s_A(x1) = max{2, x1} precedence: gt# = s partial status: pi(gt#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.