YES We show the termination of the TRS R: app(app(mapbt(),f),app(leaf(),x)) -> app(leaf(),app(f,x)) app(app(mapbt(),f),app(app(app(branch(),x),l),r)) -> app(app(app(branch(),app(f,x)),app(app(mapbt(),f),l)),app(app(mapbt(),f),r)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(mapbt(),f),app(leaf(),x)) -> app#(leaf(),app(f,x)) p2: app#(app(mapbt(),f),app(leaf(),x)) -> app#(f,x) p3: app#(app(mapbt(),f),app(app(app(branch(),x),l),r)) -> app#(app(app(branch(),app(f,x)),app(app(mapbt(),f),l)),app(app(mapbt(),f),r)) p4: app#(app(mapbt(),f),app(app(app(branch(),x),l),r)) -> app#(app(branch(),app(f,x)),app(app(mapbt(),f),l)) p5: app#(app(mapbt(),f),app(app(app(branch(),x),l),r)) -> app#(branch(),app(f,x)) p6: app#(app(mapbt(),f),app(app(app(branch(),x),l),r)) -> app#(f,x) p7: app#(app(mapbt(),f),app(app(app(branch(),x),l),r)) -> app#(app(mapbt(),f),l) p8: app#(app(mapbt(),f),app(app(app(branch(),x),l),r)) -> app#(app(mapbt(),f),r) and R consists of: r1: app(app(mapbt(),f),app(leaf(),x)) -> app(leaf(),app(f,x)) r2: app(app(mapbt(),f),app(app(app(branch(),x),l),r)) -> app(app(app(branch(),app(f,x)),app(app(mapbt(),f),l)),app(app(mapbt(),f),r)) The estimated dependency graph contains the following SCCs: {p2, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(mapbt(),f),app(leaf(),x)) -> app#(f,x) p2: app#(app(mapbt(),f),app(app(app(branch(),x),l),r)) -> app#(app(mapbt(),f),r) p3: app#(app(mapbt(),f),app(app(app(branch(),x),l),r)) -> app#(app(mapbt(),f),l) p4: app#(app(mapbt(),f),app(app(app(branch(),x),l),r)) -> app#(f,x) and R consists of: r1: app(app(mapbt(),f),app(leaf(),x)) -> app(leaf(),app(f,x)) r2: app(app(mapbt(),f),app(app(app(branch(),x),l),r)) -> app(app(app(branch(),app(f,x)),app(app(mapbt(),f),l)),app(app(mapbt(),f),r)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: app#_A(x1,x2) = max{x1 + 4, x2 + 8} app_A(x1,x2) = max{x1 + 2, x2 + 5} mapbt_A = 2 leaf_A = 0 branch_A = 3 precedence: app# = app = mapbt = leaf = branch partial status: pi(app#) = [2] pi(app) = [1, 2] pi(mapbt) = [] pi(leaf) = [] pi(branch) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: app#_A(x1,x2) = max{0, x2 - 9} app_A(x1,x2) = max{20, x1 - 3, x2 + 11} mapbt_A = 4 leaf_A = 13 branch_A = 3 precedence: app = mapbt > app# = leaf = branch partial status: pi(app#) = [] pi(app) = [2] pi(mapbt) = [] pi(leaf) = [] pi(branch) = [] The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains.