YES We show the termination of the TRS R: g(A()) -> A() g(B()) -> A() g(B()) -> B() g(C()) -> A() g(C()) -> B() g(C()) -> C() foldf(x,nil()) -> x foldf(x,cons(y,z)) -> f(foldf(x,z),y) f(t,x) -> |f'|(t,g(x)) |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: foldf#(x,cons(y,z)) -> foldf#(x,z) p3: f#(t,x) -> |f'|#(t,g(x)) p4: f#(t,x) -> g#(x) p5: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) p6: |f'|#(triple(a,b,c),A()) -> |f''|#(foldf(triple(cons(A(),a),nil(),c),b)) p7: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) p8: |f''|#(triple(a,b,c)) -> foldf#(triple(a,b,nil()),c) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> f#(foldf(x,z),y) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldf#(triple(cons(A(),a),nil(),c),b) p4: foldf#(x,cons(y,z)) -> foldf#(x,z) p5: |f'|#(triple(a,b,c),A()) -> |f''|#(foldf(triple(cons(A(),a),nil(),c),b)) p6: |f''|#(triple(a,b,c)) -> foldf#(triple(a,b,nil()),c) p7: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: foldf#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (0,1) cons_A(x1,x2) = ((1,0),(1,1)) x1 + ((0,0),(1,1)) x2 + (0,22) f#_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,1),(0,0)) x2 + (12,6) foldf_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,1)) x2 + (4,1) |f'|#_A(x1,x2) = ((0,1),(0,1)) x1 + ((0,1),(0,0)) x2 + (7,6) g_A(x1) = ((1,1),(1,1)) x1 + (13,0) triple_A(x1,x2,x3) = ((0,0),(0,1)) x2 + ((0,0),(1,1)) x3 A_A() = (1,0) nil_A() = (0,2) |f''|#_A(x1) = ((0,1),(0,1)) x1 + (3,3) B_A() = (16,6) |f''|_A(x1) = ((0,1),(0,1)) x1 + (7,3) |f'|_A(x1,x2) = ((0,1),(0,1)) x1 + x2 + (10,22) C_A() = (0,6) f_A(x1,x2) = ((0,1),(0,1)) x1 + ((1,1),(1,1)) x2 + (24,22) precedence: |f'| > |f''| > foldf > f > g > cons = B = C > f# = |f'|# > |f''|# > foldf# = triple > A > nil partial status: pi(foldf#) = [] pi(cons) = [1] pi(f#) = [] pi(foldf) = [1] pi(|f'|#) = [] pi(g) = [] pi(triple) = [] pi(A) = [] pi(nil) = [] pi(|f''|#) = [] pi(B) = [] pi(|f''|) = [] pi(|f'|) = [2] pi(C) = [] pi(f) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: foldf#_A(x1,x2) = (3,2) cons_A(x1,x2) = (0,0) f#_A(x1,x2) = (3,2) foldf_A(x1,x2) = ((0,0),(0,1)) x1 + (2,4) |f'|#_A(x1,x2) = (3,2) g_A(x1) = (0,4) triple_A(x1,x2,x3) = (0,3) A_A() = (4,2) nil_A() = (0,8) |f''|#_A(x1) = (3,2) B_A() = (0,1) |f''|_A(x1) = (5,7) |f'|_A(x1,x2) = (6,7) C_A() = (0,4) f_A(x1,x2) = (1,4) precedence: nil > foldf > |f'| = f > g = A > C > B > f# = |f'|# > |f''|# > triple = |f''| > cons > foldf# partial status: pi(foldf#) = [] pi(cons) = [] pi(f#) = [] pi(foldf) = [] pi(|f'|#) = [] pi(g) = [] pi(triple) = [] pi(A) = [] pi(nil) = [] pi(|f''|#) = [] pi(B) = [] pi(|f''|) = [] pi(|f'|) = [] pi(C) = [] pi(f) = [] The next rules are strictly ordered: p1, p3, p5, p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(t,x) -> |f'|#(t,g(x)) p2: foldf#(x,cons(y,z)) -> foldf#(x,z) p3: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The estimated dependency graph contains the following SCCs: {p1, p3} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(t,x) -> |f'|#(t,g(x)) p2: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1,x2) = max{4, x1, x2} |f'|#_A(x1,x2) = max{3, x1, x2} g_A(x1) = x1 triple_A(x1,x2,x3) = max{x1 + 5, x2 + 5, x3 + 1} B_A = 5 A_A = 0 C_A = 6 precedence: f# = |f'|# = g = triple = B = A = C partial status: pi(f#) = [1, 2] pi(|f'|#) = [1, 2] pi(g) = [] pi(triple) = [1, 2, 3] pi(B) = [] pi(A) = [] pi(C) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1,x2) = max{x1 + 15, x2 + 6} |f'|#_A(x1,x2) = x1 + 12 g_A(x1) = 5 triple_A(x1,x2,x3) = max{x1 + 5, x2 + 5, x3 + 5} B_A = 1 A_A = 4 C_A = 0 precedence: g > A > B > f# = |f'|# = triple = C partial status: pi(f#) = [2] pi(|f'|#) = [1] pi(g) = [] pi(triple) = [1] pi(B) = [] pi(A) = [] pi(C) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldf#(x,cons(y,z)) -> foldf#(x,z) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldf(x,nil()) -> x r8: foldf(x,cons(y,z)) -> f(foldf(x,z),y) r9: f(t,x) -> |f'|(t,g(x)) r10: |f'|(triple(a,b,c),C()) -> triple(a,b,cons(C(),c)) r11: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r12: |f'|(triple(a,b,c),A()) -> |f''|(foldf(triple(cons(A(),a),nil(),c),b)) r13: |f''|(triple(a,b,c)) -> foldf(triple(a,b,nil()),c) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: foldf#_A(x1,x2) = max{0, x2 - 2} cons_A(x1,x2) = max{3, x1, x2 + 1} precedence: foldf# = cons partial status: pi(foldf#) = [] pi(cons) = [1, 2] 2. weighted path order base order: max/plus interpretations on natural numbers: foldf#_A(x1,x2) = 0 cons_A(x1,x2) = x2 precedence: foldf# = cons partial status: pi(foldf#) = [] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.