YES We show the termination of the TRS R: |0|(|#|()) -> |#|() +(x,|#|()) -> x +(|#|(),x) -> x +(|0|(x),|0|(y)) -> |0|(+(x,y)) +(|0|(x),|1|(y)) -> |1|(+(x,y)) +(|1|(x),|0|(y)) -> |1|(+(x,y)) +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) +(+(x,y),z) -> +(x,+(y,z)) *(|#|(),x) -> |#|() *(|0|(x),y) -> |0|(*(x,y)) *(|1|(x),y) -> +(|0|(*(x,y)),y) *(*(x,y),z) -> *(x,*(y,z)) *(x,+(y,z)) -> +(*(x,y),*(x,z)) app(nil(),l) -> l app(cons(x,l1),l2) -> cons(x,app(l1,l2)) sum(nil()) -> |0|(|#|()) sum(cons(x,l)) -> +(x,sum(l)) sum(app(l1,l2)) -> +(sum(l1),sum(l2)) prod(nil()) -> |1|(|#|()) prod(cons(x,l)) -> *(x,prod(l)) prod(app(l1,l2)) -> *(prod(l1),prod(l2)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(|0|(x),|0|(y)) -> |0|#(+(x,y)) p2: +#(|0|(x),|0|(y)) -> +#(x,y) p3: +#(|0|(x),|1|(y)) -> +#(x,y) p4: +#(|1|(x),|0|(y)) -> +#(x,y) p5: +#(|1|(x),|1|(y)) -> |0|#(+(+(x,y),|1|(|#|()))) p6: +#(|1|(x),|1|(y)) -> +#(+(x,y),|1|(|#|())) p7: +#(|1|(x),|1|(y)) -> +#(x,y) p8: +#(+(x,y),z) -> +#(x,+(y,z)) p9: +#(+(x,y),z) -> +#(y,z) p10: *#(|0|(x),y) -> |0|#(*(x,y)) p11: *#(|0|(x),y) -> *#(x,y) p12: *#(|1|(x),y) -> +#(|0|(*(x,y)),y) p13: *#(|1|(x),y) -> |0|#(*(x,y)) p14: *#(|1|(x),y) -> *#(x,y) p15: *#(*(x,y),z) -> *#(x,*(y,z)) p16: *#(*(x,y),z) -> *#(y,z) p17: *#(x,+(y,z)) -> +#(*(x,y),*(x,z)) p18: *#(x,+(y,z)) -> *#(x,y) p19: *#(x,+(y,z)) -> *#(x,z) p20: app#(cons(x,l1),l2) -> app#(l1,l2) p21: sum#(nil()) -> |0|#(|#|()) p22: sum#(cons(x,l)) -> +#(x,sum(l)) p23: sum#(cons(x,l)) -> sum#(l) p24: sum#(app(l1,l2)) -> +#(sum(l1),sum(l2)) p25: sum#(app(l1,l2)) -> sum#(l1) p26: sum#(app(l1,l2)) -> sum#(l2) p27: prod#(cons(x,l)) -> *#(x,prod(l)) p28: prod#(cons(x,l)) -> prod#(l) p29: prod#(app(l1,l2)) -> *#(prod(l1),prod(l2)) p30: prod#(app(l1,l2)) -> prod#(l1) p31: prod#(app(l1,l2)) -> prod#(l2) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r14: app(nil(),l) -> l r15: app(cons(x,l1),l2) -> cons(x,app(l1,l2)) r16: sum(nil()) -> |0|(|#|()) r17: sum(cons(x,l)) -> +(x,sum(l)) r18: sum(app(l1,l2)) -> +(sum(l1),sum(l2)) r19: prod(nil()) -> |1|(|#|()) r20: prod(cons(x,l)) -> *(x,prod(l)) r21: prod(app(l1,l2)) -> *(prod(l1),prod(l2)) The estimated dependency graph contains the following SCCs: {p23, p25, p26} {p28, p30, p31} {p11, p14, p15, p16, p18, p19} {p2, p3, p4, p6, p7, p8, p9} {p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(app(l1,l2)) -> sum#(l2) p2: sum#(app(l1,l2)) -> sum#(l1) p3: sum#(cons(x,l)) -> sum#(l) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r14: app(nil(),l) -> l r15: app(cons(x,l1),l2) -> cons(x,app(l1,l2)) r16: sum(nil()) -> |0|(|#|()) r17: sum(cons(x,l)) -> +(x,sum(l)) r18: sum(app(l1,l2)) -> +(sum(l1),sum(l2)) r19: prod(nil()) -> |1|(|#|()) r20: prod(cons(x,l)) -> *(x,prod(l)) r21: prod(app(l1,l2)) -> *(prod(l1),prod(l2)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: sum#_A(x1) = x1 + 2 app_A(x1,x2) = max{x1 + 1, x2 + 2} cons_A(x1,x2) = max{x1 + 2, x2 + 2} precedence: sum# = app = cons partial status: pi(sum#) = [] pi(app) = [1, 2] pi(cons) = [2] 2. weighted path order base order: max/plus interpretations on natural numbers: sum#_A(x1) = 4 app_A(x1,x2) = max{x1 + 1, x2 + 3} cons_A(x1,x2) = max{3, x2 + 1} precedence: sum# > app = cons partial status: pi(sum#) = [] pi(app) = [2] pi(cons) = [2] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: prod#(app(l1,l2)) -> prod#(l2) p2: prod#(app(l1,l2)) -> prod#(l1) p3: prod#(cons(x,l)) -> prod#(l) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r14: app(nil(),l) -> l r15: app(cons(x,l1),l2) -> cons(x,app(l1,l2)) r16: sum(nil()) -> |0|(|#|()) r17: sum(cons(x,l)) -> +(x,sum(l)) r18: sum(app(l1,l2)) -> +(sum(l1),sum(l2)) r19: prod(nil()) -> |1|(|#|()) r20: prod(cons(x,l)) -> *(x,prod(l)) r21: prod(app(l1,l2)) -> *(prod(l1),prod(l2)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: prod#_A(x1) = x1 + 2 app_A(x1,x2) = max{x1 + 1, x2 + 2} cons_A(x1,x2) = max{x1 + 2, x2 + 2} precedence: prod# = app = cons partial status: pi(prod#) = [] pi(app) = [1, 2] pi(cons) = [2] 2. weighted path order base order: max/plus interpretations on natural numbers: prod#_A(x1) = 4 app_A(x1,x2) = max{x1 + 1, x2 + 3} cons_A(x1,x2) = max{3, x2 + 1} precedence: prod# > app = cons partial status: pi(prod#) = [] pi(app) = [2] pi(cons) = [2] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(x,+(y,z)) -> *#(x,z) p2: *#(x,+(y,z)) -> *#(x,y) p3: *#(*(x,y),z) -> *#(y,z) p4: *#(*(x,y),z) -> *#(x,*(y,z)) p5: *#(|1|(x),y) -> *#(x,y) p6: *#(|0|(x),y) -> *#(x,y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r14: app(nil(),l) -> l r15: app(cons(x,l1),l2) -> cons(x,app(l1,l2)) r16: sum(nil()) -> |0|(|#|()) r17: sum(cons(x,l)) -> +(x,sum(l)) r18: sum(app(l1,l2)) -> +(sum(l1),sum(l2)) r19: prod(nil()) -> |1|(|#|()) r20: prod(cons(x,l)) -> *(x,prod(l)) r21: prod(app(l1,l2)) -> *(prod(l1),prod(l2)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: *#_A(x1,x2) = x1 + 5 +_A(x1,x2) = max{8, x1, x2} *_A(x1,x2) = max{x1 + 6, x2} |1|_A(x1) = max{2, x1} |0|_A(x1) = max{3, x1} |#|_A = 1 precedence: *# > * > + = |1| = |0| = |#| partial status: pi(*#) = [] pi(+) = [1, 2] pi(*) = [1, 2] pi(|1|) = [] pi(|0|) = [] pi(|#|) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: *#_A(x1,x2) = 0 +_A(x1,x2) = max{9, x2} *_A(x1,x2) = x1 + 9 |1|_A(x1) = 9 |0|_A(x1) = 8 |#|_A = 13 precedence: + = * > *# = |#| > |1| = |0| partial status: pi(*#) = [] pi(+) = [] pi(*) = [] pi(|1|) = [] pi(|0|) = [] pi(|#|) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: *#(x,+(y,z)) -> *#(x,z) p2: *#(x,+(y,z)) -> *#(x,y) p3: *#(*(x,y),z) -> *#(y,z) p4: *#(|1|(x),y) -> *#(x,y) p5: *#(|0|(x),y) -> *#(x,y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r14: app(nil(),l) -> l r15: app(cons(x,l1),l2) -> cons(x,app(l1,l2)) r16: sum(nil()) -> |0|(|#|()) r17: sum(cons(x,l)) -> +(x,sum(l)) r18: sum(app(l1,l2)) -> +(sum(l1),sum(l2)) r19: prod(nil()) -> |1|(|#|()) r20: prod(cons(x,l)) -> *(x,prod(l)) r21: prod(app(l1,l2)) -> *(prod(l1),prod(l2)) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(x,+(y,z)) -> *#(x,z) p2: *#(|0|(x),y) -> *#(x,y) p3: *#(|1|(x),y) -> *#(x,y) p4: *#(*(x,y),z) -> *#(y,z) p5: *#(x,+(y,z)) -> *#(x,y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r14: app(nil(),l) -> l r15: app(cons(x,l1),l2) -> cons(x,app(l1,l2)) r16: sum(nil()) -> |0|(|#|()) r17: sum(cons(x,l)) -> +(x,sum(l)) r18: sum(app(l1,l2)) -> +(sum(l1),sum(l2)) r19: prod(nil()) -> |1|(|#|()) r20: prod(cons(x,l)) -> *(x,prod(l)) r21: prod(app(l1,l2)) -> *(prod(l1),prod(l2)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: *#_A(x1,x2) = max{3, x1 + 1, x2 + 1} +_A(x1,x2) = max{x1, x2} |0|_A(x1) = max{1, x1} |1|_A(x1) = max{2, x1 + 1} *_A(x1,x2) = max{2, x2} precedence: *# = + = |0| = |1| = * partial status: pi(*#) = [1, 2] pi(+) = [1, 2] pi(|0|) = [1] pi(|1|) = [1] pi(*) = [2] 2. weighted path order base order: max/plus interpretations on natural numbers: *#_A(x1,x2) = max{x1 + 1, x2 + 1} +_A(x1,x2) = max{x1, x2} |0|_A(x1) = x1 |1|_A(x1) = x1 *_A(x1,x2) = x2 precedence: *# = + = |0| = |1| = * partial status: pi(*#) = [1, 2] pi(+) = [1, 2] pi(|0|) = [1] pi(|1|) = [1] pi(*) = [2] The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(|0|(x),|0|(y)) -> +#(x,y) p2: +#(+(x,y),z) -> +#(y,z) p3: +#(+(x,y),z) -> +#(x,+(y,z)) p4: +#(|1|(x),|1|(y)) -> +#(x,y) p5: +#(|1|(x),|1|(y)) -> +#(+(x,y),|1|(|#|())) p6: +#(|0|(x),|1|(y)) -> +#(x,y) p7: +#(|1|(x),|0|(y)) -> +#(x,y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r14: app(nil(),l) -> l r15: app(cons(x,l1),l2) -> cons(x,app(l1,l2)) r16: sum(nil()) -> |0|(|#|()) r17: sum(cons(x,l)) -> +(x,sum(l)) r18: sum(app(l1,l2)) -> +(sum(l1),sum(l2)) r19: prod(nil()) -> |1|(|#|()) r20: prod(cons(x,l)) -> *(x,prod(l)) r21: prod(app(l1,l2)) -> *(prod(l1),prod(l2)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(1,1)) x2 + (6,18) |0|_A(x1) = ((1,0),(1,1)) x1 + (1,2) +_A(x1,x2) = x1 + x2 + (2,3) |1|_A(x1) = ((1,0),(1,1)) x1 + (5,17) |#|_A() = (1,1) precedence: +# = + > |0| > |1| = |#| partial status: pi(+#) = [1] pi(|0|) = [1] pi(+) = [1, 2] pi(|1|) = [1] pi(|#|) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = x1 |0|_A(x1) = x1 + (2,1) +_A(x1,x2) = x1 |1|_A(x1) = x1 + (2,1) |#|_A() = (1,1) precedence: + = |1| = |#| > |0| > +# partial status: pi(+#) = [1] pi(|0|) = [1] pi(+) = [1] pi(|1|) = [1] pi(|#|) = [] The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(|1|(x),|1|(y)) -> +#(+(x,y),|1|(|#|())) p2: +#(|0|(x),|1|(y)) -> +#(x,y) p3: +#(|1|(x),|0|(y)) -> +#(x,y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r14: app(nil(),l) -> l r15: app(cons(x,l1),l2) -> cons(x,app(l1,l2)) r16: sum(nil()) -> |0|(|#|()) r17: sum(cons(x,l)) -> +(x,sum(l)) r18: sum(app(l1,l2)) -> +(sum(l1),sum(l2)) r19: prod(nil()) -> |1|(|#|()) r20: prod(cons(x,l)) -> *(x,prod(l)) r21: prod(app(l1,l2)) -> *(prod(l1),prod(l2)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(|1|(x),|1|(y)) -> +#(+(x,y),|1|(|#|())) p2: +#(|0|(x),|1|(y)) -> +#(x,y) p3: +#(|1|(x),|0|(y)) -> +#(x,y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r14: app(nil(),l) -> l r15: app(cons(x,l1),l2) -> cons(x,app(l1,l2)) r16: sum(nil()) -> |0|(|#|()) r17: sum(cons(x,l)) -> +(x,sum(l)) r18: sum(app(l1,l2)) -> +(sum(l1),sum(l2)) r19: prod(nil()) -> |1|(|#|()) r20: prod(cons(x,l)) -> *(x,prod(l)) r21: prod(app(l1,l2)) -> *(prod(l1),prod(l2)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = ((1,1),(0,0)) x1 + ((1,1),(0,1)) x2 + (3,0) |1|_A(x1) = ((1,0),(1,1)) x1 + (2,3) +_A(x1,x2) = x1 + x2 + (0,1) |#|_A() = (0,0) |0|_A(x1) = ((1,0),(1,1)) x1 + (1,0) precedence: + > +# = |1| = |#| = |0| partial status: pi(+#) = [2] pi(|1|) = [] pi(+) = [1, 2] pi(|#|) = [] pi(|0|) = [1] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = (1,1) |1|_A(x1) = (5,3) +_A(x1,x2) = ((1,1),(0,0)) x2 + (4,4) |#|_A() = (2,2) |0|_A(x1) = (3,2) precedence: +# = |1| = + = |0| > |#| partial status: pi(+#) = [] pi(|1|) = [] pi(+) = [] pi(|#|) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(|0|(x),|1|(y)) -> +#(x,y) p2: +#(|1|(x),|0|(y)) -> +#(x,y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r14: app(nil(),l) -> l r15: app(cons(x,l1),l2) -> cons(x,app(l1,l2)) r16: sum(nil()) -> |0|(|#|()) r17: sum(cons(x,l)) -> +(x,sum(l)) r18: sum(app(l1,l2)) -> +(sum(l1),sum(l2)) r19: prod(nil()) -> |1|(|#|()) r20: prod(cons(x,l)) -> *(x,prod(l)) r21: prod(app(l1,l2)) -> *(prod(l1),prod(l2)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(|0|(x),|1|(y)) -> +#(x,y) p2: +#(|1|(x),|0|(y)) -> +#(x,y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r14: app(nil(),l) -> l r15: app(cons(x,l1),l2) -> cons(x,app(l1,l2)) r16: sum(nil()) -> |0|(|#|()) r17: sum(cons(x,l)) -> +(x,sum(l)) r18: sum(app(l1,l2)) -> +(sum(l1),sum(l2)) r19: prod(nil()) -> |1|(|#|()) r20: prod(cons(x,l)) -> *(x,prod(l)) r21: prod(app(l1,l2)) -> *(prod(l1),prod(l2)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: +#_A(x1,x2) = max{2, x1 + 1, x2 + 1} |0|_A(x1) = max{1, x1} |1|_A(x1) = max{1, x1} precedence: +# = |0| = |1| partial status: pi(+#) = [1, 2] pi(|0|) = [1] pi(|1|) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: +#_A(x1,x2) = max{x1 + 1, x2 - 1} |0|_A(x1) = x1 |1|_A(x1) = x1 precedence: +# = |0| = |1| partial status: pi(+#) = [1] pi(|0|) = [1] pi(|1|) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(cons(x,l1),l2) -> app#(l1,l2) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(+(x,y),z) -> +(x,+(y,z)) r9: *(|#|(),x) -> |#|() r10: *(|0|(x),y) -> |0|(*(x,y)) r11: *(|1|(x),y) -> +(|0|(*(x,y)),y) r12: *(*(x,y),z) -> *(x,*(y,z)) r13: *(x,+(y,z)) -> +(*(x,y),*(x,z)) r14: app(nil(),l) -> l r15: app(cons(x,l1),l2) -> cons(x,app(l1,l2)) r16: sum(nil()) -> |0|(|#|()) r17: sum(cons(x,l)) -> +(x,sum(l)) r18: sum(app(l1,l2)) -> +(sum(l1),sum(l2)) r19: prod(nil()) -> |1|(|#|()) r20: prod(cons(x,l)) -> *(x,prod(l)) r21: prod(app(l1,l2)) -> *(prod(l1),prod(l2)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: app#_A(x1,x2) = x1 + 1 cons_A(x1,x2) = max{x1, x2 + 1} precedence: app# = cons partial status: pi(app#) = [1] pi(cons) = [1, 2] 2. weighted path order base order: max/plus interpretations on natural numbers: app#_A(x1,x2) = max{0, x1 - 1} cons_A(x1,x2) = max{x1, x2} precedence: app# = cons partial status: pi(app#) = [] pi(cons) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.