YES We show the termination of the TRS R: rev(ls) -> r1(ls,empty()) r1(empty(),a) -> a r1(cons(x,k),a) -> r1(k,cons(x,a)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: rev#(ls) -> r1#(ls,empty()) p2: r1#(cons(x,k),a) -> r1#(k,cons(x,a)) and R consists of: r1: rev(ls) -> r1(ls,empty()) r2: r1(empty(),a) -> a r3: r1(cons(x,k),a) -> r1(k,cons(x,a)) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: r1#(cons(x,k),a) -> r1#(k,cons(x,a)) and R consists of: r1: rev(ls) -> r1(ls,empty()) r2: r1(empty(),a) -> a r3: r1(cons(x,k),a) -> r1(k,cons(x,a)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: r1#_A(x1,x2) = max{x1 + 3, x2 - 1} cons_A(x1,x2) = max{2, x1, x2} precedence: r1# = cons partial status: pi(r1#) = [1] pi(cons) = [1, 2] 2. weighted path order base order: max/plus interpretations on natural numbers: r1#_A(x1,x2) = max{0, x1 - 2} cons_A(x1,x2) = max{x1 + 1, x2} precedence: r1# = cons partial status: pi(r1#) = [] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.