YES We show the termination of the TRS R: f(x,empty()) -> x f(empty(),cons(a,k)) -> f(cons(a,k),k) f(cons(a,k),y) -> f(y,k) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(empty(),cons(a,k)) -> f#(cons(a,k),k) p2: f#(cons(a,k),y) -> f#(y,k) and R consists of: r1: f(x,empty()) -> x r2: f(empty(),cons(a,k)) -> f(cons(a,k),k) r3: f(cons(a,k),y) -> f(y,k) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(empty(),cons(a,k)) -> f#(cons(a,k),k) p2: f#(cons(a,k),y) -> f#(y,k) and R consists of: r1: f(x,empty()) -> x r2: f(empty(),cons(a,k)) -> f(cons(a,k),k) r3: f(cons(a,k),y) -> f(y,k) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1,x2) = max{x1 + 5, x2 + 7} empty_A = 0 cons_A(x1,x2) = max{x1, x2 + 3} precedence: f# = empty = cons partial status: pi(f#) = [1, 2] pi(empty) = [] pi(cons) = [1, 2] 2. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1,x2) = max{x1 + 3, x2 + 4} empty_A = 1 cons_A(x1,x2) = max{x1 - 5, x2 + 2} precedence: f# = empty = cons partial status: pi(f#) = [1] pi(empty) = [] pi(cons) = [2] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.