YES We show the termination of the TRS R: sum(|0|()) -> |0|() sum(s(x)) -> +(sqr(s(x)),sum(x)) sqr(x) -> *(x,x) sum(s(x)) -> +(*(s(x),s(x)),sum(x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: sum#(s(x)) -> sqr#(s(x)) p2: sum#(s(x)) -> sum#(x) p3: sum#(s(x)) -> sum#(x) and R consists of: r1: sum(|0|()) -> |0|() r2: sum(s(x)) -> +(sqr(s(x)),sum(x)) r3: sqr(x) -> *(x,x) r4: sum(s(x)) -> +(*(s(x),s(x)),sum(x)) The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(s(x)) -> sum#(x) and R consists of: r1: sum(|0|()) -> |0|() r2: sum(s(x)) -> +(sqr(s(x)),sum(x)) r3: sqr(x) -> *(x,x) r4: sum(s(x)) -> +(*(s(x),s(x)),sum(x)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: sum#_A(x1) = max{2, x1 + 1} s_A(x1) = max{1, x1} precedence: sum# = s partial status: pi(sum#) = [1] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: sum#_A(x1) = x1 + 2 s_A(x1) = x1 + 1 precedence: sum# = s partial status: pi(sum#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.