YES We show the termination of the TRS R: if(true(),x,y) -> x if(false(),x,y) -> y if(x,y,y) -> y if(if(x,y,z),u(),v()) -> if(x,if(y,u(),v()),if(z,u(),v())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(if(x,y,z),u(),v()) -> if#(x,if(y,u(),v()),if(z,u(),v())) p2: if#(if(x,y,z),u(),v()) -> if#(y,u(),v()) p3: if#(if(x,y,z),u(),v()) -> if#(z,u(),v()) and R consists of: r1: if(true(),x,y) -> x r2: if(false(),x,y) -> y r3: if(x,y,y) -> y r4: if(if(x,y,z),u(),v()) -> if(x,if(y,u(),v()),if(z,u(),v())) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(if(x,y,z),u(),v()) -> if#(x,if(y,u(),v()),if(z,u(),v())) p2: if#(if(x,y,z),u(),v()) -> if#(z,u(),v()) p3: if#(if(x,y,z),u(),v()) -> if#(y,u(),v()) and R consists of: r1: if(true(),x,y) -> x r2: if(false(),x,y) -> y r3: if(x,y,y) -> y r4: if(if(x,y,z),u(),v()) -> if(x,if(y,u(),v()),if(z,u(),v())) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{x1 + 39, x2 + 31, x3 + 20} if_A(x1,x2,x3) = max{x1 + 17, x2 + 10, x3 + 13} u_A = 9 v_A = 0 true_A = 0 false_A = 0 precedence: if# = if = u = true = false > v partial status: pi(if#) = [1, 2, 3] pi(if) = [1, 2, 3] pi(u) = [] pi(v) = [] pi(true) = [] pi(false) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{x1 + 20, x2 + 6, x3 + 14} if_A(x1,x2,x3) = max{x1 + 4, x2 + 5, x3 + 5} u_A = 4 v_A = 2 true_A = 0 false_A = 0 precedence: if# = if = u = v = true = false partial status: pi(if#) = [] pi(if) = [2, 3] pi(u) = [] pi(v) = [] pi(true) = [] pi(false) = [] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.