YES We show the termination of the TRS R: and(not(not(x)),y,not(z)) -> and(y,band(x,z),x) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: and#(not(not(x)),y,not(z)) -> and#(y,band(x,z),x) and R consists of: r1: and(not(not(x)),y,not(z)) -> and(y,band(x,z),x) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(not(not(x)),y,not(z)) -> and#(y,band(x,z),x) and R consists of: r1: and(not(not(x)),y,not(z)) -> and(y,band(x,z),x) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: and#_A(x1,x2,x3) = max{x1 - 1, x2 + 1, x3 - 1} not_A(x1) = x1 + 5 band_A(x1,x2) = max{x1 - 1, x2 + 2} precedence: and# = not = band partial status: pi(and#) = [] pi(not) = [] pi(band) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: and#_A(x1,x2,x3) = 0 not_A(x1) = max{5, x1} band_A(x1,x2) = 7 precedence: and# = not = band partial status: pi(and#) = [] pi(not) = [1] pi(band) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.