YES We show the termination of the TRS R: del(.(x,.(y,z))) -> f(=(x,y),x,y,z) f(true(),x,y,z) -> del(.(y,z)) f(false(),x,y,z) -> .(x,del(.(y,z))) =(nil(),nil()) -> true() =(.(x,y),nil()) -> false() =(nil(),.(y,z)) -> false() =(.(x,y),.(u(),v())) -> and(=(x,u()),=(y,v())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: del#(.(x,.(y,z))) -> f#(=(x,y),x,y,z) p2: del#(.(x,.(y,z))) -> =#(x,y) p3: f#(true(),x,y,z) -> del#(.(y,z)) p4: f#(false(),x,y,z) -> del#(.(y,z)) p5: =#(.(x,y),.(u(),v())) -> =#(x,u()) p6: =#(.(x,y),.(u(),v())) -> =#(y,v()) and R consists of: r1: del(.(x,.(y,z))) -> f(=(x,y),x,y,z) r2: f(true(),x,y,z) -> del(.(y,z)) r3: f(false(),x,y,z) -> .(x,del(.(y,z))) r4: =(nil(),nil()) -> true() r5: =(.(x,y),nil()) -> false() r6: =(nil(),.(y,z)) -> false() r7: =(.(x,y),.(u(),v())) -> and(=(x,u()),=(y,v())) The estimated dependency graph contains the following SCCs: {p1, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: del#(.(x,.(y,z))) -> f#(=(x,y),x,y,z) p2: f#(false(),x,y,z) -> del#(.(y,z)) p3: f#(true(),x,y,z) -> del#(.(y,z)) and R consists of: r1: del(.(x,.(y,z))) -> f(=(x,y),x,y,z) r2: f(true(),x,y,z) -> del(.(y,z)) r3: f(false(),x,y,z) -> .(x,del(.(y,z))) r4: =(nil(),nil()) -> true() r5: =(.(x,y),nil()) -> false() r6: =(nil(),.(y,z)) -> false() r7: =(.(x,y),.(u(),v())) -> and(=(x,u()),=(y,v())) The set of usable rules consists of r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: del#_A(x1) = max{40, x1 + 9} ._A(x1,x2) = max{x1 + 23, x2 + 7} f#_A(x1,x2,x3,x4) = max{40, x1 + 8, x2 + 32, x3 + 38, x4 + 23} =_A(x1,x2) = max{x1 + 23, x2 + 2} false_A = 33 true_A = 33 nil_A = 34 u_A = 3 v_A = 15 and_A(x1,x2) = max{29, x1, x2 + 7} precedence: . > del# = f# = = = false = true = nil = u = v = and partial status: pi(del#) = [1] pi(.) = [1, 2] pi(f#) = [1, 3, 4] pi(=) = [1, 2] pi(false) = [] pi(true) = [] pi(nil) = [] pi(u) = [] pi(v) = [] pi(and) = [1, 2] 2. weighted path order base order: max/plus interpretations on natural numbers: del#_A(x1) = max{1, x1 - 6} ._A(x1,x2) = max{x1 + 16, x2 + 16} f#_A(x1,x2,x3,x4) = max{x1 - 13, x3 + 10, x4 + 11} =_A(x1,x2) = max{x1 + 22, x2 + 20} false_A = 15 true_A = 18 nil_A = 14 u_A = 13 v_A = 15 and_A(x1,x2) = max{52, x1 + 35, x2 + 35} precedence: del# = . = f# = = = false = true = nil = u = v = and partial status: pi(del#) = [] pi(.) = [2] pi(f#) = [4] pi(=) = [] pi(false) = [] pi(true) = [] pi(nil) = [] pi(u) = [] pi(v) = [] pi(and) = [] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.