YES We show the termination of the TRS R: qsort(nil()) -> nil() qsort(.(x,y)) -> ++(qsort(lowers(x,y)),.(x,qsort(greaters(x,y)))) lowers(x,nil()) -> nil() lowers(x,.(y,z)) -> if(<=(y,x),.(y,lowers(x,z)),lowers(x,z)) greaters(x,nil()) -> nil() greaters(x,.(y,z)) -> if(<=(y,x),greaters(x,z),.(y,greaters(x,z))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: qsort#(.(x,y)) -> qsort#(lowers(x,y)) p2: qsort#(.(x,y)) -> lowers#(x,y) p3: qsort#(.(x,y)) -> qsort#(greaters(x,y)) p4: qsort#(.(x,y)) -> greaters#(x,y) p5: lowers#(x,.(y,z)) -> lowers#(x,z) p6: greaters#(x,.(y,z)) -> greaters#(x,z) and R consists of: r1: qsort(nil()) -> nil() r2: qsort(.(x,y)) -> ++(qsort(lowers(x,y)),.(x,qsort(greaters(x,y)))) r3: lowers(x,nil()) -> nil() r4: lowers(x,.(y,z)) -> if(<=(y,x),.(y,lowers(x,z)),lowers(x,z)) r5: greaters(x,nil()) -> nil() r6: greaters(x,.(y,z)) -> if(<=(y,x),greaters(x,z),.(y,greaters(x,z))) The estimated dependency graph contains the following SCCs: {p1, p3} {p5} {p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: qsort#(.(x,y)) -> qsort#(lowers(x,y)) p2: qsort#(.(x,y)) -> qsort#(greaters(x,y)) and R consists of: r1: qsort(nil()) -> nil() r2: qsort(.(x,y)) -> ++(qsort(lowers(x,y)),.(x,qsort(greaters(x,y)))) r3: lowers(x,nil()) -> nil() r4: lowers(x,.(y,z)) -> if(<=(y,x),.(y,lowers(x,z)),lowers(x,z)) r5: greaters(x,nil()) -> nil() r6: greaters(x,.(y,z)) -> if(<=(y,x),greaters(x,z),.(y,greaters(x,z))) The set of usable rules consists of r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: qsort#_A(x1) = max{4, x1} ._A(x1,x2) = max{x1 + 11, x2 + 5} lowers_A(x1,x2) = x2 + 3 greaters_A(x1,x2) = max{x1 + 10, x2 + 5} nil_A = 7 if_A(x1,x2,x3) = max{2, x1 - 2, x2} <=_A(x1,x2) = x1 + 13 precedence: . = lowers > qsort# = greaters > nil = if = <= partial status: pi(qsort#) = [1] pi(.) = [1, 2] pi(lowers) = [2] pi(greaters) = [1, 2] pi(nil) = [] pi(if) = [2] pi(<=) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: qsort#_A(x1) = x1 + 8 ._A(x1,x2) = max{x1 + 15, x2 + 3} lowers_A(x1,x2) = max{9, x2 - 4} greaters_A(x1,x2) = max{x1 + 14, x2 - 1} nil_A = 13 if_A(x1,x2,x3) = max{15, x2 + 4} <=_A(x1,x2) = x1 + 15 precedence: qsort# = . = lowers = greaters = nil = if = <= partial status: pi(qsort#) = [] pi(.) = [2] pi(lowers) = [] pi(greaters) = [] pi(nil) = [] pi(if) = [] pi(<=) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: lowers#(x,.(y,z)) -> lowers#(x,z) and R consists of: r1: qsort(nil()) -> nil() r2: qsort(.(x,y)) -> ++(qsort(lowers(x,y)),.(x,qsort(greaters(x,y)))) r3: lowers(x,nil()) -> nil() r4: lowers(x,.(y,z)) -> if(<=(y,x),.(y,lowers(x,z)),lowers(x,z)) r5: greaters(x,nil()) -> nil() r6: greaters(x,.(y,z)) -> if(<=(y,x),greaters(x,z),.(y,greaters(x,z))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: lowers#_A(x1,x2) = max{0, x2 - 2} ._A(x1,x2) = max{3, x1, x2 + 1} precedence: lowers# = . partial status: pi(lowers#) = [] pi(.) = [1, 2] 2. weighted path order base order: max/plus interpretations on natural numbers: lowers#_A(x1,x2) = 0 ._A(x1,x2) = x2 precedence: lowers# = . partial status: pi(lowers#) = [] pi(.) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: greaters#(x,.(y,z)) -> greaters#(x,z) and R consists of: r1: qsort(nil()) -> nil() r2: qsort(.(x,y)) -> ++(qsort(lowers(x,y)),.(x,qsort(greaters(x,y)))) r3: lowers(x,nil()) -> nil() r4: lowers(x,.(y,z)) -> if(<=(y,x),.(y,lowers(x,z)),lowers(x,z)) r5: greaters(x,nil()) -> nil() r6: greaters(x,.(y,z)) -> if(<=(y,x),greaters(x,z),.(y,greaters(x,z))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: greaters#_A(x1,x2) = max{0, x2 - 2} ._A(x1,x2) = max{3, x1, x2 + 1} precedence: greaters# = . partial status: pi(greaters#) = [] pi(.) = [1, 2] 2. weighted path order base order: max/plus interpretations on natural numbers: greaters#_A(x1,x2) = 0 ._A(x1,x2) = x2 precedence: greaters# = . partial status: pi(greaters#) = [] pi(.) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.