YES We show the termination of the TRS R: c(z,x,a()) -> f(b(b(f(z),z),x)) b(y,b(z,a())) -> f(b(c(f(a()),y,z),z)) f(c(c(z,a(),a()),x,a())) -> z -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: c#(z,x,a()) -> f#(b(b(f(z),z),x)) p2: c#(z,x,a()) -> b#(b(f(z),z),x) p3: c#(z,x,a()) -> b#(f(z),z) p4: c#(z,x,a()) -> f#(z) p5: b#(y,b(z,a())) -> f#(b(c(f(a()),y,z),z)) p6: b#(y,b(z,a())) -> b#(c(f(a()),y,z),z) p7: b#(y,b(z,a())) -> c#(f(a()),y,z) p8: b#(y,b(z,a())) -> f#(a()) and R consists of: r1: c(z,x,a()) -> f(b(b(f(z),z),x)) r2: b(y,b(z,a())) -> f(b(c(f(a()),y,z),z)) r3: f(c(c(z,a(),a()),x,a())) -> z The estimated dependency graph contains the following SCCs: {p2, p3, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(z,x,a()) -> b#(b(f(z),z),x) p2: b#(y,b(z,a())) -> c#(f(a()),y,z) p3: c#(z,x,a()) -> b#(f(z),z) p4: b#(y,b(z,a())) -> b#(c(f(a()),y,z),z) and R consists of: r1: c(z,x,a()) -> f(b(b(f(z),z),x)) r2: b(y,b(z,a())) -> f(b(c(f(a()),y,z),z)) r3: f(c(c(z,a(),a()),x,a())) -> z The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: c#_A(x1,x2,x3) = max{169, x1 + 130, x2 + 97, x3} a_A = 83 b#_A(x1,x2) = max{x1 + 98, x2 + 97} b_A(x1,x2) = max{70, x1 + 21, x2 + 16} f_A(x1) = max{3, x1 - 47} c_A(x1,x2,x3) = max{95, x1 + 61, x2 - 1, x3 + 9} precedence: c# > a = b > f = c > b# partial status: pi(c#) = [1, 2, 3] pi(a) = [] pi(b#) = [1, 2] pi(b) = [1, 2] pi(f) = [] pi(c) = [1, 3] 2. weighted path order base order: max/plus interpretations on natural numbers: c#_A(x1,x2,x3) = max{25, x1 + 14, x2 + 23, x3 + 1} a_A = 13 b#_A(x1,x2) = max{x1 - 9, x2 + 23} b_A(x1,x2) = max{26, x1 + 7, x2 - 8} f_A(x1) = 24 c_A(x1,x2,x3) = max{x1 + 27, x3 + 1} precedence: c# = a = b# = b = f = c partial status: pi(c#) = [3] pi(a) = [] pi(b#) = [] pi(b) = [1] pi(f) = [] pi(c) = [] The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains.