YES We show the termination of the TRS R: c(c(z,y,a()),a(),a()) -> b(z,y) f(c(x,y,z)) -> c(z,f(b(y,z)),a()) b(z,b(c(a(),y,a()),f(f(x)))) -> c(c(y,a(),z),z,x) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: c#(c(z,y,a()),a(),a()) -> b#(z,y) p2: f#(c(x,y,z)) -> c#(z,f(b(y,z)),a()) p3: f#(c(x,y,z)) -> f#(b(y,z)) p4: f#(c(x,y,z)) -> b#(y,z) p5: b#(z,b(c(a(),y,a()),f(f(x)))) -> c#(c(y,a(),z),z,x) p6: b#(z,b(c(a(),y,a()),f(f(x)))) -> c#(y,a(),z) and R consists of: r1: c(c(z,y,a()),a(),a()) -> b(z,y) r2: f(c(x,y,z)) -> c(z,f(b(y,z)),a()) r3: b(z,b(c(a(),y,a()),f(f(x)))) -> c(c(y,a(),z),z,x) The estimated dependency graph contains the following SCCs: {p3} {p1, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(c(x,y,z)) -> f#(b(y,z)) and R consists of: r1: c(c(z,y,a()),a(),a()) -> b(z,y) r2: f(c(x,y,z)) -> c(z,f(b(y,z)),a()) r3: b(z,b(c(a(),y,a()),f(f(x)))) -> c(c(y,a(),z),z,x) The set of usable rules consists of r1, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = max{4, x1 + 2} c_A(x1,x2,x3) = max{x1 + 5, x2 + 5, x3} b_A(x1,x2) = max{x1 + 5, x2} a_A = 4 f_A(x1) = max{15, x1} precedence: c = b = a > f# > f partial status: pi(f#) = [1] pi(c) = [3] pi(b) = [2] pi(a) = [] pi(f) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = max{11, x1 - 3} c_A(x1,x2,x3) = x3 + 36 b_A(x1,x2) = x2 + 8 a_A = 9 f_A(x1) = x1 + 10 precedence: b > f# = c = a = f partial status: pi(f#) = [] pi(c) = [3] pi(b) = [] pi(a) = [] pi(f) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(c(z,y,a()),a(),a()) -> b#(z,y) p2: b#(z,b(c(a(),y,a()),f(f(x)))) -> c#(y,a(),z) p3: b#(z,b(c(a(),y,a()),f(f(x)))) -> c#(c(y,a(),z),z,x) and R consists of: r1: c(c(z,y,a()),a(),a()) -> b(z,y) r2: f(c(x,y,z)) -> c(z,f(b(y,z)),a()) r3: b(z,b(c(a(),y,a()),f(f(x)))) -> c(c(y,a(),z),z,x) The set of usable rules consists of r1, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: c#_A(x1,x2,x3) = max{x1 + 75, x2 + 1, x3 + 106} c_A(x1,x2,x3) = max{x1 + 32, x2 + 45, x3 + 28} a_A = 17 b#_A(x1,x2) = max{x1 + 107, x2 + 32} b_A(x1,x2) = max{x1 + 61, x2 + 77} f_A(x1) = max{18, x1 + 9} precedence: c# = c = a = b# = b = f partial status: pi(c#) = [1, 2] pi(c) = [1, 2, 3] pi(a) = [] pi(b#) = [1, 2] pi(b) = [1, 2] pi(f) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: c#_A(x1,x2,x3) = max{0, x1 - 1, x2 - 1} c_A(x1,x2,x3) = max{x1 + 9, x2 + 8, x3 + 6} a_A = 4 b#_A(x1,x2) = max{x1 + 5, x2 + 2} b_A(x1,x2) = max{x1 + 22, x2 + 18} f_A(x1) = x1 + 5 precedence: c# = c = a = b# = b = f partial status: pi(c#) = [] pi(c) = [2, 3] pi(a) = [] pi(b#) = [1, 2] pi(b) = [2] pi(f) = [1] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.