YES We show the termination of the TRS R: sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(cons(|0|(),x),y) -> sum(x,y) sum(nil(),y) -> y weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(|0|(),x))) weight(cons(n,nil())) -> n -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: sum#(cons(s(n),x),cons(m,y)) -> sum#(cons(n,x),cons(s(m),y)) p2: sum#(cons(|0|(),x),y) -> sum#(x,y) p3: weight#(cons(n,cons(m,x))) -> weight#(sum(cons(n,cons(m,x)),cons(|0|(),x))) p4: weight#(cons(n,cons(m,x))) -> sum#(cons(n,cons(m,x)),cons(|0|(),x)) and R consists of: r1: sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) r2: sum(cons(|0|(),x),y) -> sum(x,y) r3: sum(nil(),y) -> y r4: weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(|0|(),x))) r5: weight(cons(n,nil())) -> n The estimated dependency graph contains the following SCCs: {p3} {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: weight#(cons(n,cons(m,x))) -> weight#(sum(cons(n,cons(m,x)),cons(|0|(),x))) and R consists of: r1: sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) r2: sum(cons(|0|(),x),y) -> sum(x,y) r3: sum(nil(),y) -> y r4: weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(|0|(),x))) r5: weight(cons(n,nil())) -> n The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: weight#_A(x1) = max{9, x1} cons_A(x1,x2) = max{12, x1 + 10, x2 + 4} sum_A(x1,x2) = x2 + 4 |0|_A = 2 nil_A = 0 s_A(x1) = max{2, x1} precedence: |0| > cons > weight# = sum > nil = s partial status: pi(weight#) = [1] pi(cons) = [] pi(sum) = [] pi(|0|) = [] pi(nil) = [] pi(s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: weight#_A(x1) = x1 + 8 cons_A(x1,x2) = 9 sum_A(x1,x2) = 1 |0|_A = 7 nil_A = 0 s_A(x1) = max{10, x1} precedence: cons = |0| = nil = s > sum > weight# partial status: pi(weight#) = [1] pi(cons) = [] pi(sum) = [] pi(|0|) = [] pi(nil) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(cons(s(n),x),cons(m,y)) -> sum#(cons(n,x),cons(s(m),y)) p2: sum#(cons(|0|(),x),y) -> sum#(x,y) and R consists of: r1: sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) r2: sum(cons(|0|(),x),y) -> sum(x,y) r3: sum(nil(),y) -> y r4: weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(|0|(),x))) r5: weight(cons(n,nil())) -> n The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: sum#_A(x1,x2) = max{8, x1 + 4, x2 + 2} cons_A(x1,x2) = max{x1 + 2, x2 + 4} s_A(x1) = x1 |0|_A = 2 precedence: sum# = cons = s = |0| partial status: pi(sum#) = [1, 2] pi(cons) = [1, 2] pi(s) = [1] pi(|0|) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: sum#_A(x1,x2) = x1 + 6 cons_A(x1,x2) = max{x1 + 2, x2} s_A(x1) = x1 + 3 |0|_A = 0 precedence: sum# = cons = s = |0| partial status: pi(sum#) = [1] pi(cons) = [1, 2] pi(s) = [1] pi(|0|) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.