YES We show the termination of the TRS R: a__2nd(cons(X,cons(Y,Z))) -> mark(Y) a__from(X) -> cons(mark(X),from(s(X))) mark(|2nd|(X)) -> a__2nd(mark(X)) mark(from(X)) -> a__from(mark(X)) mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(s(X)) -> s(mark(X)) a__2nd(X) -> |2nd|(X) a__from(X) -> from(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__2nd#(cons(X,cons(Y,Z))) -> mark#(Y) p2: a__from#(X) -> mark#(X) p3: mark#(|2nd|(X)) -> a__2nd#(mark(X)) p4: mark#(|2nd|(X)) -> mark#(X) p5: mark#(from(X)) -> a__from#(mark(X)) p6: mark#(from(X)) -> mark#(X) p7: mark#(cons(X1,X2)) -> mark#(X1) p8: mark#(s(X)) -> mark#(X) and R consists of: r1: a__2nd(cons(X,cons(Y,Z))) -> mark(Y) r2: a__from(X) -> cons(mark(X),from(s(X))) r3: mark(|2nd|(X)) -> a__2nd(mark(X)) r4: mark(from(X)) -> a__from(mark(X)) r5: mark(cons(X1,X2)) -> cons(mark(X1),X2) r6: mark(s(X)) -> s(mark(X)) r7: a__2nd(X) -> |2nd|(X) r8: a__from(X) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__2nd#(cons(X,cons(Y,Z))) -> mark#(Y) p2: mark#(s(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(from(X)) -> mark#(X) p5: mark#(from(X)) -> a__from#(mark(X)) p6: a__from#(X) -> mark#(X) p7: mark#(|2nd|(X)) -> mark#(X) p8: mark#(|2nd|(X)) -> a__2nd#(mark(X)) and R consists of: r1: a__2nd(cons(X,cons(Y,Z))) -> mark(Y) r2: a__from(X) -> cons(mark(X),from(s(X))) r3: mark(|2nd|(X)) -> a__2nd(mark(X)) r4: mark(from(X)) -> a__from(mark(X)) r5: mark(cons(X1,X2)) -> cons(mark(X1),X2) r6: mark(s(X)) -> s(mark(X)) r7: a__2nd(X) -> |2nd|(X) r8: a__from(X) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a__2nd#_A(x1) = max{7, x1 + 1} cons_A(x1,x2) = max{7, x1 + 5, x2} mark#_A(x1) = x1 s_A(x1) = max{1, x1} from_A(x1) = max{14, x1 + 12} a__from#_A(x1) = max{14, x1 + 6} mark_A(x1) = max{6, x1 + 4} |2nd|_A(x1) = max{10, x1 + 8} a__2nd_A(x1) = max{11, x1 + 8} a__from_A(x1) = max{15, x1 + 12} precedence: a__2nd# = mark = a__2nd > s = |2nd| = a__from > from > cons = mark# = a__from# partial status: pi(a__2nd#) = [1] pi(cons) = [1, 2] pi(mark#) = [1] pi(s) = [1] pi(from) = [1] pi(a__from#) = [1] pi(mark) = [1] pi(|2nd|) = [1] pi(a__2nd) = [] pi(a__from) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: a__2nd#_A(x1) = max{8, x1 - 1} cons_A(x1,x2) = max{x1 + 28, x2 + 13} mark#_A(x1) = x1 + 21 s_A(x1) = max{56, x1 + 28} from_A(x1) = max{29, x1 + 10} a__from#_A(x1) = max{30, x1 + 22} mark_A(x1) = max{27, x1} |2nd|_A(x1) = max{5, x1 + 4} a__2nd_A(x1) = 6 a__from_A(x1) = 11 precedence: a__2nd# = cons = mark# = s = from = a__from# = mark = |2nd| = a__2nd = a__from partial status: pi(a__2nd#) = [] pi(cons) = [1, 2] pi(mark#) = [1] pi(s) = [1] pi(from) = [1] pi(a__from#) = [1] pi(mark) = [1] pi(|2nd|) = [1] pi(a__2nd) = [] pi(a__from) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8 We remove them from the problem. Then no dependency pair remains.