YES We show the termination of the TRS R: from(X) -> cons(X,n__from(n__s(X))) first(|0|(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) sel(|0|(),cons(X,Z)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) from(X) -> n__from(X) s(X) -> n__s(X) first(X1,X2) -> n__first(X1,X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) p3: sel#(s(X),cons(Y,Z)) -> activate#(Z) p4: activate#(n__from(X)) -> from#(activate(X)) p5: activate#(n__from(X)) -> activate#(X) p6: activate#(n__s(X)) -> s#(activate(X)) p7: activate#(n__s(X)) -> activate#(X) p8: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) p9: activate#(n__first(X1,X2)) -> activate#(X1) p10: activate#(n__first(X1,X2)) -> activate#(X2) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: s(X) -> n__s(X) r8: first(X1,X2) -> n__first(X1,X2) r9: activate(n__from(X)) -> from(activate(X)) r10: activate(n__s(X)) -> s(activate(X)) r11: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r12: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2} {p1, p5, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: s(X) -> n__s(X) r8: first(X1,X2) -> n__first(X1,X2) r9: activate(n__from(X)) -> from(activate(X)) r10: activate(n__s(X)) -> s(activate(X)) r11: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r12: activate(X) -> X The set of usable rules consists of r1, r2, r3, r6, r7, r8, r9, r10, r11, r12 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: sel#_A(x1,x2) = max{x1 + 3, x2 + 8} s_A(x1) = max{19, x1 + 12} cons_A(x1,x2) = max{6, x2 + 5} activate_A(x1) = max{6, x1} from_A(x1) = 6 n__from_A(x1) = 0 n__s_A(x1) = max{19, x1 + 12} first_A(x1,x2) = max{20, x1 + 14, x2 + 7} |0|_A = 21 nil_A = 20 n__first_A(x1,x2) = max{20, x1 + 14, x2 + 7} precedence: sel# > first = |0| = nil = n__first > activate > from > cons > n__from > s > n__s partial status: pi(sel#) = [1] pi(s) = [1] pi(cons) = [] pi(activate) = [1] pi(from) = [] pi(n__from) = [] pi(n__s) = [1] pi(first) = [] pi(|0|) = [] pi(nil) = [] pi(n__first) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: sel#_A(x1,x2) = max{22, x1 + 14} s_A(x1) = max{26, x1 + 9} cons_A(x1,x2) = 30 activate_A(x1) = x1 + 24 from_A(x1) = 31 n__from_A(x1) = 7 n__s_A(x1) = max{26, x1 + 9} first_A(x1,x2) = 23 |0|_A = 0 nil_A = 6 n__first_A(x1,x2) = 0 precedence: s = activate = n__s > sel# = from = n__from = |0| = nil = n__first > first > cons partial status: pi(sel#) = [1] pi(s) = [] pi(cons) = [] pi(activate) = [] pi(from) = [] pi(n__from) = [] pi(n__s) = [] pi(first) = [] pi(|0|) = [] pi(nil) = [] pi(n__first) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> activate#(X2) p3: activate#(n__first(X1,X2)) -> activate#(X1) p4: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) p5: activate#(n__s(X)) -> activate#(X) p6: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: s(X) -> n__s(X) r8: first(X1,X2) -> n__first(X1,X2) r9: activate(n__from(X)) -> from(activate(X)) r10: activate(n__s(X)) -> s(activate(X)) r11: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r12: activate(X) -> X The set of usable rules consists of r1, r2, r3, r6, r7, r8, r9, r10, r11, r12 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: first#_A(x1,x2) = max{1, x1 - 1, x2} s_A(x1) = max{2, x1} cons_A(x1,x2) = max{1, x1, x2} activate#_A(x1) = x1 n__first_A(x1,x2) = max{10, x1, x2 + 5} activate_A(x1) = max{4, x1} n__s_A(x1) = max{2, x1} n__from_A(x1) = max{3, x1} from_A(x1) = max{3, x1} first_A(x1,x2) = max{10, x1, x2 + 5} |0|_A = 2 nil_A = 1 precedence: first# > activate > s = from = first = |0| = nil > n__first > cons = n__s > n__from > activate# partial status: pi(first#) = [2] pi(s) = [1] pi(cons) = [1, 2] pi(activate#) = [1] pi(n__first) = [1, 2] pi(activate) = [1] pi(n__s) = [1] pi(n__from) = [1] pi(from) = [1] pi(first) = [1, 2] pi(|0|) = [] pi(nil) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: first#_A(x1,x2) = max{5, x2} s_A(x1) = max{8, x1} cons_A(x1,x2) = max{x1 + 5, x2} activate#_A(x1) = x1 n__first_A(x1,x2) = max{x1 + 4, x2} activate_A(x1) = x1 + 4 n__s_A(x1) = max{4, x1} n__from_A(x1) = x1 + 6 from_A(x1) = max{10, x1 + 6} first_A(x1,x2) = 3 |0|_A = 0 nil_A = 4 precedence: first# = n__first > |0| > activate > s > n__from = from > cons > activate# > n__s = first = nil partial status: pi(first#) = [2] pi(s) = [1] pi(cons) = [2] pi(activate#) = [1] pi(n__first) = [1, 2] pi(activate) = [1] pi(n__s) = [1] pi(n__from) = [] pi(from) = [1] pi(first) = [] pi(|0|) = [] pi(nil) = [] The next rules are strictly ordered: p4, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> activate#(X2) p3: activate#(n__first(X1,X2)) -> activate#(X1) p4: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: s(X) -> n__s(X) r8: first(X1,X2) -> n__first(X1,X2) r9: activate(n__from(X)) -> from(activate(X)) r10: activate(n__s(X)) -> s(activate(X)) r11: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r12: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__first(X1,X2)) -> activate#(X2) p2: activate#(n__from(X)) -> activate#(X) p3: activate#(n__first(X1,X2)) -> activate#(X1) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: s(X) -> n__s(X) r8: first(X1,X2) -> n__first(X1,X2) r9: activate(n__from(X)) -> from(activate(X)) r10: activate(n__s(X)) -> s(activate(X)) r11: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r12: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: activate#_A(x1) = max{3, x1 + 2} n__first_A(x1,x2) = max{x1 + 1, x2} n__from_A(x1) = max{1, x1} precedence: activate# = n__first = n__from partial status: pi(activate#) = [1] pi(n__first) = [1, 2] pi(n__from) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: activate#_A(x1) = x1 + 2 n__first_A(x1,x2) = max{x1 + 1, x2 + 1} n__from_A(x1) = x1 + 1 precedence: activate# = n__first = n__from partial status: pi(activate#) = [] pi(n__first) = [2] pi(n__from) = [1] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.