YES We show the termination of the TRS R: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) active(sqr(|0|())) -> mark(|0|()) active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) active(dbl(|0|())) -> mark(|0|()) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(|0|(),X)) -> mark(X) active(add(s(X),Y)) -> mark(s(add(X,Y))) active(first(|0|(),X)) -> mark(nil()) active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(X)) mark(|0|()) -> active(|0|()) mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) mark(nil()) -> active(nil()) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1),X2) -> add(X1,X2) add(X1,mark(X2)) -> add(X1,X2) add(active(X1),X2) -> add(X1,X2) add(X1,active(X2)) -> add(X1,X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1),X2) -> first(X1,X2) first(X1,mark(X2)) -> first(X1,X2) first(active(X1),X2) -> first(X1,X2) first(X1,active(X2)) -> first(X1,X2) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(terms(N)) -> mark#(cons(recip(sqr(N)),terms(s(N)))) p2: active#(terms(N)) -> cons#(recip(sqr(N)),terms(s(N))) p3: active#(terms(N)) -> recip#(sqr(N)) p4: active#(terms(N)) -> sqr#(N) p5: active#(terms(N)) -> terms#(s(N)) p6: active#(terms(N)) -> s#(N) p7: active#(sqr(|0|())) -> mark#(|0|()) p8: active#(sqr(s(X))) -> mark#(s(add(sqr(X),dbl(X)))) p9: active#(sqr(s(X))) -> s#(add(sqr(X),dbl(X))) p10: active#(sqr(s(X))) -> add#(sqr(X),dbl(X)) p11: active#(sqr(s(X))) -> sqr#(X) p12: active#(sqr(s(X))) -> dbl#(X) p13: active#(dbl(|0|())) -> mark#(|0|()) p14: active#(dbl(s(X))) -> mark#(s(s(dbl(X)))) p15: active#(dbl(s(X))) -> s#(s(dbl(X))) p16: active#(dbl(s(X))) -> s#(dbl(X)) p17: active#(dbl(s(X))) -> dbl#(X) p18: active#(add(|0|(),X)) -> mark#(X) p19: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p20: active#(add(s(X),Y)) -> s#(add(X,Y)) p21: active#(add(s(X),Y)) -> add#(X,Y) p22: active#(first(|0|(),X)) -> mark#(nil()) p23: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p24: active#(first(s(X),cons(Y,Z))) -> cons#(Y,first(X,Z)) p25: active#(first(s(X),cons(Y,Z))) -> first#(X,Z) p26: mark#(terms(X)) -> active#(terms(mark(X))) p27: mark#(terms(X)) -> terms#(mark(X)) p28: mark#(terms(X)) -> mark#(X) p29: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p30: mark#(cons(X1,X2)) -> cons#(mark(X1),X2) p31: mark#(cons(X1,X2)) -> mark#(X1) p32: mark#(recip(X)) -> active#(recip(mark(X))) p33: mark#(recip(X)) -> recip#(mark(X)) p34: mark#(recip(X)) -> mark#(X) p35: mark#(sqr(X)) -> active#(sqr(mark(X))) p36: mark#(sqr(X)) -> sqr#(mark(X)) p37: mark#(sqr(X)) -> mark#(X) p38: mark#(s(X)) -> active#(s(X)) p39: mark#(|0|()) -> active#(|0|()) p40: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p41: mark#(add(X1,X2)) -> add#(mark(X1),mark(X2)) p42: mark#(add(X1,X2)) -> mark#(X1) p43: mark#(add(X1,X2)) -> mark#(X2) p44: mark#(dbl(X)) -> active#(dbl(mark(X))) p45: mark#(dbl(X)) -> dbl#(mark(X)) p46: mark#(dbl(X)) -> mark#(X) p47: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p48: mark#(first(X1,X2)) -> first#(mark(X1),mark(X2)) p49: mark#(first(X1,X2)) -> mark#(X1) p50: mark#(first(X1,X2)) -> mark#(X2) p51: mark#(nil()) -> active#(nil()) p52: terms#(mark(X)) -> terms#(X) p53: terms#(active(X)) -> terms#(X) p54: cons#(mark(X1),X2) -> cons#(X1,X2) p55: cons#(X1,mark(X2)) -> cons#(X1,X2) p56: cons#(active(X1),X2) -> cons#(X1,X2) p57: cons#(X1,active(X2)) -> cons#(X1,X2) p58: recip#(mark(X)) -> recip#(X) p59: recip#(active(X)) -> recip#(X) p60: sqr#(mark(X)) -> sqr#(X) p61: sqr#(active(X)) -> sqr#(X) p62: s#(mark(X)) -> s#(X) p63: s#(active(X)) -> s#(X) p64: add#(mark(X1),X2) -> add#(X1,X2) p65: add#(X1,mark(X2)) -> add#(X1,X2) p66: add#(active(X1),X2) -> add#(X1,X2) p67: add#(X1,active(X2)) -> add#(X1,X2) p68: dbl#(mark(X)) -> dbl#(X) p69: dbl#(active(X)) -> dbl#(X) p70: first#(mark(X1),X2) -> first#(X1,X2) p71: first#(X1,mark(X2)) -> first#(X1,X2) p72: first#(active(X1),X2) -> first#(X1,X2) p73: first#(X1,active(X2)) -> first#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: mark(terms(X)) -> active(terms(mark(X))) r11: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r12: mark(recip(X)) -> active(recip(mark(X))) r13: mark(sqr(X)) -> active(sqr(mark(X))) r14: mark(s(X)) -> active(s(X)) r15: mark(|0|()) -> active(|0|()) r16: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r17: mark(dbl(X)) -> active(dbl(mark(X))) r18: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r19: mark(nil()) -> active(nil()) r20: terms(mark(X)) -> terms(X) r21: terms(active(X)) -> terms(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: recip(mark(X)) -> recip(X) r27: recip(active(X)) -> recip(X) r28: sqr(mark(X)) -> sqr(X) r29: sqr(active(X)) -> sqr(X) r30: s(mark(X)) -> s(X) r31: s(active(X)) -> s(X) r32: add(mark(X1),X2) -> add(X1,X2) r33: add(X1,mark(X2)) -> add(X1,X2) r34: add(active(X1),X2) -> add(X1,X2) r35: add(X1,active(X2)) -> add(X1,X2) r36: dbl(mark(X)) -> dbl(X) r37: dbl(active(X)) -> dbl(X) r38: first(mark(X1),X2) -> first(X1,X2) r39: first(X1,mark(X2)) -> first(X1,X2) r40: first(active(X1),X2) -> first(X1,X2) r41: first(X1,active(X2)) -> first(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p8, p14, p18, p19, p23, p26, p28, p29, p31, p32, p34, p35, p37, p38, p40, p42, p43, p44, p46, p47, p49, p50} {p54, p55, p56, p57} {p58, p59} {p60, p61} {p52, p53} {p62, p63} {p64, p65, p66, p67} {p68, p69} {p70, p71, p72, p73} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(terms(N)) -> mark#(cons(recip(sqr(N)),terms(s(N)))) p2: mark#(first(X1,X2)) -> mark#(X2) p3: mark#(first(X1,X2)) -> mark#(X1) p4: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p5: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p6: mark#(dbl(X)) -> mark#(X) p7: mark#(dbl(X)) -> active#(dbl(mark(X))) p8: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p9: mark#(add(X1,X2)) -> mark#(X2) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(add(X1,X2)) -> active#(add(mark(X1),mark(X2))) p12: active#(add(|0|(),X)) -> mark#(X) p13: mark#(s(X)) -> active#(s(X)) p14: active#(dbl(s(X))) -> mark#(s(s(dbl(X)))) p15: mark#(sqr(X)) -> mark#(X) p16: mark#(sqr(X)) -> active#(sqr(mark(X))) p17: active#(sqr(s(X))) -> mark#(s(add(sqr(X),dbl(X)))) p18: mark#(recip(X)) -> mark#(X) p19: mark#(recip(X)) -> active#(recip(mark(X))) p20: mark#(cons(X1,X2)) -> mark#(X1) p21: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p22: mark#(terms(X)) -> mark#(X) p23: mark#(terms(X)) -> active#(terms(mark(X))) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: mark(terms(X)) -> active(terms(mark(X))) r11: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r12: mark(recip(X)) -> active(recip(mark(X))) r13: mark(sqr(X)) -> active(sqr(mark(X))) r14: mark(s(X)) -> active(s(X)) r15: mark(|0|()) -> active(|0|()) r16: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r17: mark(dbl(X)) -> active(dbl(mark(X))) r18: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r19: mark(nil()) -> active(nil()) r20: terms(mark(X)) -> terms(X) r21: terms(active(X)) -> terms(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: recip(mark(X)) -> recip(X) r27: recip(active(X)) -> recip(X) r28: sqr(mark(X)) -> sqr(X) r29: sqr(active(X)) -> sqr(X) r30: s(mark(X)) -> s(X) r31: s(active(X)) -> s(X) r32: add(mark(X1),X2) -> add(X1,X2) r33: add(X1,mark(X2)) -> add(X1,X2) r34: add(active(X1),X2) -> add(X1,X2) r35: add(X1,active(X2)) -> add(X1,X2) r36: dbl(mark(X)) -> dbl(X) r37: dbl(active(X)) -> dbl(X) r38: first(mark(X1),X2) -> first(X1,X2) r39: first(X1,mark(X2)) -> first(X1,X2) r40: first(active(X1),X2) -> first(X1,X2) r41: first(X1,active(X2)) -> first(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{120, x1 + 4} terms_A(x1) = max{658, x1 + 396} mark#_A(x1) = max{136, x1 + 36} cons_A(x1,x2) = x1 + 109 recip_A(x1) = x1 + 136 sqr_A(x1) = max{119, x1 + 88} s_A(x1) = 118 first_A(x1,x2) = max{x1 + 323, x2 + 328} mark_A(x1) = x1 + 32 dbl_A(x1) = x1 + 151 add_A(x1,x2) = max{x1 + 99, x2 + 62} |0|_A = 85 active_A(x1) = max{117, x1} nil_A = 297 precedence: mark > s = dbl > sqr = add > terms = |0| > mark# > active# > cons = recip = first = active = nil partial status: pi(active#) = [1] pi(terms) = [1] pi(mark#) = [1] pi(cons) = [1] pi(recip) = [1] pi(sqr) = [1] pi(s) = [] pi(first) = [1, 2] pi(mark) = [] pi(dbl) = [1] pi(add) = [1, 2] pi(|0|) = [] pi(active) = [1] pi(nil) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{2, x1 - 700} terms_A(x1) = max{1904, x1 + 1869} mark#_A(x1) = max{504, x1 - 96} cons_A(x1,x2) = x1 + 601 recip_A(x1) = max{604, x1 + 1} sqr_A(x1) = max{662, x1 + 316} s_A(x1) = 443 first_A(x1,x2) = max{x1 + 333, x2 + 702} mark_A(x1) = 404 dbl_A(x1) = x1 + 694 add_A(x1,x2) = max{x1 + 62, x2 + 1046} |0|_A = 441 active_A(x1) = 403 nil_A = 775 precedence: nil > active# = terms = mark# = cons > recip > sqr = s = first = mark > dbl = add = |0| = active partial status: pi(active#) = [] pi(terms) = [1] pi(mark#) = [] pi(cons) = [] pi(recip) = [] pi(sqr) = [1] pi(s) = [] pi(first) = [2] pi(mark) = [] pi(dbl) = [1] pi(add) = [2] pi(|0|) = [] pi(active) = [] pi(nil) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) p4: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: mark(terms(X)) -> active(terms(mark(X))) r11: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r12: mark(recip(X)) -> active(recip(mark(X))) r13: mark(sqr(X)) -> active(sqr(mark(X))) r14: mark(s(X)) -> active(s(X)) r15: mark(|0|()) -> active(|0|()) r16: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r17: mark(dbl(X)) -> active(dbl(mark(X))) r18: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r19: mark(nil()) -> active(nil()) r20: terms(mark(X)) -> terms(X) r21: terms(active(X)) -> terms(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: recip(mark(X)) -> recip(X) r27: recip(active(X)) -> recip(X) r28: sqr(mark(X)) -> sqr(X) r29: sqr(active(X)) -> sqr(X) r30: s(mark(X)) -> s(X) r31: s(active(X)) -> s(X) r32: add(mark(X1),X2) -> add(X1,X2) r33: add(X1,mark(X2)) -> add(X1,X2) r34: add(active(X1),X2) -> add(X1,X2) r35: add(X1,active(X2)) -> add(X1,X2) r36: dbl(mark(X)) -> dbl(X) r37: dbl(active(X)) -> dbl(X) r38: first(mark(X1),X2) -> first(X1,X2) r39: first(X1,mark(X2)) -> first(X1,X2) r40: first(active(X1),X2) -> first(X1,X2) r41: first(X1,active(X2)) -> first(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{2, x1 + 1, x2 + 1} mark_A(x1) = max{1, x1} active_A(x1) = max{1, x1} precedence: cons# = mark = active partial status: pi(cons#) = [1, 2] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{x1 + 1, x2 - 1} mark_A(x1) = x1 active_A(x1) = x1 precedence: cons# = mark = active partial status: pi(cons#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: recip#(mark(X)) -> recip#(X) p2: recip#(active(X)) -> recip#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: mark(terms(X)) -> active(terms(mark(X))) r11: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r12: mark(recip(X)) -> active(recip(mark(X))) r13: mark(sqr(X)) -> active(sqr(mark(X))) r14: mark(s(X)) -> active(s(X)) r15: mark(|0|()) -> active(|0|()) r16: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r17: mark(dbl(X)) -> active(dbl(mark(X))) r18: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r19: mark(nil()) -> active(nil()) r20: terms(mark(X)) -> terms(X) r21: terms(active(X)) -> terms(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: recip(mark(X)) -> recip(X) r27: recip(active(X)) -> recip(X) r28: sqr(mark(X)) -> sqr(X) r29: sqr(active(X)) -> sqr(X) r30: s(mark(X)) -> s(X) r31: s(active(X)) -> s(X) r32: add(mark(X1),X2) -> add(X1,X2) r33: add(X1,mark(X2)) -> add(X1,X2) r34: add(active(X1),X2) -> add(X1,X2) r35: add(X1,active(X2)) -> add(X1,X2) r36: dbl(mark(X)) -> dbl(X) r37: dbl(active(X)) -> dbl(X) r38: first(mark(X1),X2) -> first(X1,X2) r39: first(X1,mark(X2)) -> first(X1,X2) r40: first(active(X1),X2) -> first(X1,X2) r41: first(X1,active(X2)) -> first(X1,X2) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: recip#_A(x1) = max{6, x1 + 4} mark_A(x1) = max{4, x1 + 3} active_A(x1) = max{2, x1 + 1} precedence: recip# = mark = active partial status: pi(recip#) = [1] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: recip#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: recip# = mark = active partial status: pi(recip#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sqr#(mark(X)) -> sqr#(X) p2: sqr#(active(X)) -> sqr#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: mark(terms(X)) -> active(terms(mark(X))) r11: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r12: mark(recip(X)) -> active(recip(mark(X))) r13: mark(sqr(X)) -> active(sqr(mark(X))) r14: mark(s(X)) -> active(s(X)) r15: mark(|0|()) -> active(|0|()) r16: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r17: mark(dbl(X)) -> active(dbl(mark(X))) r18: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r19: mark(nil()) -> active(nil()) r20: terms(mark(X)) -> terms(X) r21: terms(active(X)) -> terms(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: recip(mark(X)) -> recip(X) r27: recip(active(X)) -> recip(X) r28: sqr(mark(X)) -> sqr(X) r29: sqr(active(X)) -> sqr(X) r30: s(mark(X)) -> s(X) r31: s(active(X)) -> s(X) r32: add(mark(X1),X2) -> add(X1,X2) r33: add(X1,mark(X2)) -> add(X1,X2) r34: add(active(X1),X2) -> add(X1,X2) r35: add(X1,active(X2)) -> add(X1,X2) r36: dbl(mark(X)) -> dbl(X) r37: dbl(active(X)) -> dbl(X) r38: first(mark(X1),X2) -> first(X1,X2) r39: first(X1,mark(X2)) -> first(X1,X2) r40: first(active(X1),X2) -> first(X1,X2) r41: first(X1,active(X2)) -> first(X1,X2) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: sqr#_A(x1) = max{6, x1 + 4} mark_A(x1) = max{4, x1 + 3} active_A(x1) = max{2, x1 + 1} precedence: sqr# = mark = active partial status: pi(sqr#) = [1] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: sqr#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: sqr# = mark = active partial status: pi(sqr#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: terms#(mark(X)) -> terms#(X) p2: terms#(active(X)) -> terms#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: mark(terms(X)) -> active(terms(mark(X))) r11: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r12: mark(recip(X)) -> active(recip(mark(X))) r13: mark(sqr(X)) -> active(sqr(mark(X))) r14: mark(s(X)) -> active(s(X)) r15: mark(|0|()) -> active(|0|()) r16: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r17: mark(dbl(X)) -> active(dbl(mark(X))) r18: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r19: mark(nil()) -> active(nil()) r20: terms(mark(X)) -> terms(X) r21: terms(active(X)) -> terms(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: recip(mark(X)) -> recip(X) r27: recip(active(X)) -> recip(X) r28: sqr(mark(X)) -> sqr(X) r29: sqr(active(X)) -> sqr(X) r30: s(mark(X)) -> s(X) r31: s(active(X)) -> s(X) r32: add(mark(X1),X2) -> add(X1,X2) r33: add(X1,mark(X2)) -> add(X1,X2) r34: add(active(X1),X2) -> add(X1,X2) r35: add(X1,active(X2)) -> add(X1,X2) r36: dbl(mark(X)) -> dbl(X) r37: dbl(active(X)) -> dbl(X) r38: first(mark(X1),X2) -> first(X1,X2) r39: first(X1,mark(X2)) -> first(X1,X2) r40: first(active(X1),X2) -> first(X1,X2) r41: first(X1,active(X2)) -> first(X1,X2) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: terms#_A(x1) = max{6, x1 + 4} mark_A(x1) = max{4, x1 + 3} active_A(x1) = max{2, x1 + 1} precedence: terms# = mark = active partial status: pi(terms#) = [1] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: terms#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: terms# = mark = active partial status: pi(terms#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: mark(terms(X)) -> active(terms(mark(X))) r11: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r12: mark(recip(X)) -> active(recip(mark(X))) r13: mark(sqr(X)) -> active(sqr(mark(X))) r14: mark(s(X)) -> active(s(X)) r15: mark(|0|()) -> active(|0|()) r16: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r17: mark(dbl(X)) -> active(dbl(mark(X))) r18: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r19: mark(nil()) -> active(nil()) r20: terms(mark(X)) -> terms(X) r21: terms(active(X)) -> terms(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: recip(mark(X)) -> recip(X) r27: recip(active(X)) -> recip(X) r28: sqr(mark(X)) -> sqr(X) r29: sqr(active(X)) -> sqr(X) r30: s(mark(X)) -> s(X) r31: s(active(X)) -> s(X) r32: add(mark(X1),X2) -> add(X1,X2) r33: add(X1,mark(X2)) -> add(X1,X2) r34: add(active(X1),X2) -> add(X1,X2) r35: add(X1,active(X2)) -> add(X1,X2) r36: dbl(mark(X)) -> dbl(X) r37: dbl(active(X)) -> dbl(X) r38: first(mark(X1),X2) -> first(X1,X2) r39: first(X1,mark(X2)) -> first(X1,X2) r40: first(active(X1),X2) -> first(X1,X2) r41: first(X1,active(X2)) -> first(X1,X2) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = max{6, x1 + 4} mark_A(x1) = max{4, x1 + 3} active_A(x1) = max{2, x1 + 1} precedence: s# = mark = active partial status: pi(s#) = [1] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: s# = mark = active partial status: pi(s#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(X1,active(X2)) -> add#(X1,X2) p3: add#(active(X1),X2) -> add#(X1,X2) p4: add#(X1,mark(X2)) -> add#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: mark(terms(X)) -> active(terms(mark(X))) r11: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r12: mark(recip(X)) -> active(recip(mark(X))) r13: mark(sqr(X)) -> active(sqr(mark(X))) r14: mark(s(X)) -> active(s(X)) r15: mark(|0|()) -> active(|0|()) r16: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r17: mark(dbl(X)) -> active(dbl(mark(X))) r18: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r19: mark(nil()) -> active(nil()) r20: terms(mark(X)) -> terms(X) r21: terms(active(X)) -> terms(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: recip(mark(X)) -> recip(X) r27: recip(active(X)) -> recip(X) r28: sqr(mark(X)) -> sqr(X) r29: sqr(active(X)) -> sqr(X) r30: s(mark(X)) -> s(X) r31: s(active(X)) -> s(X) r32: add(mark(X1),X2) -> add(X1,X2) r33: add(X1,mark(X2)) -> add(X1,X2) r34: add(active(X1),X2) -> add(X1,X2) r35: add(X1,active(X2)) -> add(X1,X2) r36: dbl(mark(X)) -> dbl(X) r37: dbl(active(X)) -> dbl(X) r38: first(mark(X1),X2) -> first(X1,X2) r39: first(X1,mark(X2)) -> first(X1,X2) r40: first(active(X1),X2) -> first(X1,X2) r41: first(X1,active(X2)) -> first(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: add#_A(x1,x2) = max{2, x1 + 1, x2 + 1} mark_A(x1) = max{1, x1} active_A(x1) = max{1, x1} precedence: add# = mark = active partial status: pi(add#) = [1, 2] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: add#_A(x1,x2) = max{x1 + 1, x2 - 1} mark_A(x1) = x1 active_A(x1) = x1 precedence: add# = mark = active partial status: pi(add#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(mark(X)) -> dbl#(X) p2: dbl#(active(X)) -> dbl#(X) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: mark(terms(X)) -> active(terms(mark(X))) r11: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r12: mark(recip(X)) -> active(recip(mark(X))) r13: mark(sqr(X)) -> active(sqr(mark(X))) r14: mark(s(X)) -> active(s(X)) r15: mark(|0|()) -> active(|0|()) r16: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r17: mark(dbl(X)) -> active(dbl(mark(X))) r18: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r19: mark(nil()) -> active(nil()) r20: terms(mark(X)) -> terms(X) r21: terms(active(X)) -> terms(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: recip(mark(X)) -> recip(X) r27: recip(active(X)) -> recip(X) r28: sqr(mark(X)) -> sqr(X) r29: sqr(active(X)) -> sqr(X) r30: s(mark(X)) -> s(X) r31: s(active(X)) -> s(X) r32: add(mark(X1),X2) -> add(X1,X2) r33: add(X1,mark(X2)) -> add(X1,X2) r34: add(active(X1),X2) -> add(X1,X2) r35: add(X1,active(X2)) -> add(X1,X2) r36: dbl(mark(X)) -> dbl(X) r37: dbl(active(X)) -> dbl(X) r38: first(mark(X1),X2) -> first(X1,X2) r39: first(X1,mark(X2)) -> first(X1,X2) r40: first(active(X1),X2) -> first(X1,X2) r41: first(X1,active(X2)) -> first(X1,X2) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: dbl#_A(x1) = x1 + 2 mark_A(x1) = x1 active_A(x1) = x1 + 2 precedence: mark > active > dbl# partial status: pi(dbl#) = [1] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: dbl#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: dbl# = mark = active partial status: pi(dbl#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) p2: first#(X1,active(X2)) -> first#(X1,X2) p3: first#(active(X1),X2) -> first#(X1,X2) p4: first#(X1,mark(X2)) -> first#(X1,X2) and R consists of: r1: active(terms(N)) -> mark(cons(recip(sqr(N)),terms(s(N)))) r2: active(sqr(|0|())) -> mark(|0|()) r3: active(sqr(s(X))) -> mark(s(add(sqr(X),dbl(X)))) r4: active(dbl(|0|())) -> mark(|0|()) r5: active(dbl(s(X))) -> mark(s(s(dbl(X)))) r6: active(add(|0|(),X)) -> mark(X) r7: active(add(s(X),Y)) -> mark(s(add(X,Y))) r8: active(first(|0|(),X)) -> mark(nil()) r9: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r10: mark(terms(X)) -> active(terms(mark(X))) r11: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r12: mark(recip(X)) -> active(recip(mark(X))) r13: mark(sqr(X)) -> active(sqr(mark(X))) r14: mark(s(X)) -> active(s(X)) r15: mark(|0|()) -> active(|0|()) r16: mark(add(X1,X2)) -> active(add(mark(X1),mark(X2))) r17: mark(dbl(X)) -> active(dbl(mark(X))) r18: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r19: mark(nil()) -> active(nil()) r20: terms(mark(X)) -> terms(X) r21: terms(active(X)) -> terms(X) r22: cons(mark(X1),X2) -> cons(X1,X2) r23: cons(X1,mark(X2)) -> cons(X1,X2) r24: cons(active(X1),X2) -> cons(X1,X2) r25: cons(X1,active(X2)) -> cons(X1,X2) r26: recip(mark(X)) -> recip(X) r27: recip(active(X)) -> recip(X) r28: sqr(mark(X)) -> sqr(X) r29: sqr(active(X)) -> sqr(X) r30: s(mark(X)) -> s(X) r31: s(active(X)) -> s(X) r32: add(mark(X1),X2) -> add(X1,X2) r33: add(X1,mark(X2)) -> add(X1,X2) r34: add(active(X1),X2) -> add(X1,X2) r35: add(X1,active(X2)) -> add(X1,X2) r36: dbl(mark(X)) -> dbl(X) r37: dbl(active(X)) -> dbl(X) r38: first(mark(X1),X2) -> first(X1,X2) r39: first(X1,mark(X2)) -> first(X1,X2) r40: first(active(X1),X2) -> first(X1,X2) r41: first(X1,active(X2)) -> first(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: first#_A(x1,x2) = max{2, x1 + 1, x2 + 1} mark_A(x1) = max{1, x1} active_A(x1) = max{1, x1} precedence: first# = mark = active partial status: pi(first#) = [1, 2] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: first#_A(x1,x2) = max{x1 + 1, x2 - 1} mark_A(x1) = x1 active_A(x1) = x1 precedence: first# = mark = active partial status: pi(first#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains.