YES We show the termination of the TRS R: f(X) -> if(X,c(),n__f(true())) if(true(),X,Y) -> X if(false(),X,Y) -> activate(Y) f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(X) -> if#(X,c(),n__f(true())) p2: if#(false(),X,Y) -> activate#(Y) p3: activate#(n__f(X)) -> f#(X) and R consists of: r1: f(X) -> if(X,c(),n__f(true())) r2: if(true(),X,Y) -> X r3: if(false(),X,Y) -> activate(Y) r4: f(X) -> n__f(X) r5: activate(n__f(X)) -> f(X) r6: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(X) -> if#(X,c(),n__f(true())) p2: if#(false(),X,Y) -> activate#(Y) p3: activate#(n__f(X)) -> f#(X) and R consists of: r1: f(X) -> if(X,c(),n__f(true())) r2: if(true(),X,Y) -> X r3: if(false(),X,Y) -> activate(Y) r4: f(X) -> n__f(X) r5: activate(n__f(X)) -> f(X) r6: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = max{6, x1 + 3} if#_A(x1,x2,x3) = max{x1 + 3, x2 + 1, x3 + 1} c_A = 1 n__f_A(x1) = x1 + 4 true_A = 1 false_A = 4 activate#_A(x1) = max{7, x1 + 1} precedence: c > true = false > f# = n__f > if# > activate# partial status: pi(f#) = [1] pi(if#) = [2, 3] pi(c) = [] pi(n__f) = [1] pi(true) = [] pi(false) = [] pi(activate#) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = x1 + 5 if#_A(x1,x2,x3) = max{1, x2 - 2, x3} c_A = 4 n__f_A(x1) = max{1, x1} true_A = 4 false_A = 0 activate#_A(x1) = x1 + 5 precedence: f# = if# = c = n__f = true = false = activate# partial status: pi(f#) = [1] pi(if#) = [3] pi(c) = [] pi(n__f) = [1] pi(true) = [] pi(false) = [] pi(activate#) = [1] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.