YES We show the termination of the TRS R: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) active(from(X)) -> mark(cons(X,from(s(X)))) mark(|2nd|(X)) -> active(|2nd|(mark(X))) mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) mark(from(X)) -> active(from(mark(X))) mark(s(X)) -> active(s(mark(X))) |2nd|(mark(X)) -> |2nd|(X) |2nd|(active(X)) -> |2nd|(X) cons1(mark(X1),X2) -> cons1(X1,X2) cons1(X1,mark(X2)) -> cons1(X1,X2) cons1(active(X1),X2) -> cons1(X1,X2) cons1(X1,active(X2)) -> cons1(X1,X2) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(|2nd|(cons1(X,cons(Y,Z)))) -> mark#(Y) p2: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p3: active#(|2nd|(cons(X,X1))) -> |2nd|#(cons1(X,X1)) p4: active#(|2nd|(cons(X,X1))) -> cons1#(X,X1) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: active#(from(X)) -> cons#(X,from(s(X))) p7: active#(from(X)) -> from#(s(X)) p8: active#(from(X)) -> s#(X) p9: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) p10: mark#(|2nd|(X)) -> |2nd|#(mark(X)) p11: mark#(|2nd|(X)) -> mark#(X) p12: mark#(cons1(X1,X2)) -> active#(cons1(mark(X1),mark(X2))) p13: mark#(cons1(X1,X2)) -> cons1#(mark(X1),mark(X2)) p14: mark#(cons1(X1,X2)) -> mark#(X1) p15: mark#(cons1(X1,X2)) -> mark#(X2) p16: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p17: mark#(cons(X1,X2)) -> cons#(mark(X1),X2) p18: mark#(cons(X1,X2)) -> mark#(X1) p19: mark#(from(X)) -> active#(from(mark(X))) p20: mark#(from(X)) -> from#(mark(X)) p21: mark#(from(X)) -> mark#(X) p22: mark#(s(X)) -> active#(s(mark(X))) p23: mark#(s(X)) -> s#(mark(X)) p24: mark#(s(X)) -> mark#(X) p25: |2nd|#(mark(X)) -> |2nd|#(X) p26: |2nd|#(active(X)) -> |2nd|#(X) p27: cons1#(mark(X1),X2) -> cons1#(X1,X2) p28: cons1#(X1,mark(X2)) -> cons1#(X1,X2) p29: cons1#(active(X1),X2) -> cons1#(X1,X2) p30: cons1#(X1,active(X2)) -> cons1#(X1,X2) p31: cons#(mark(X1),X2) -> cons#(X1,X2) p32: cons#(X1,mark(X2)) -> cons#(X1,X2) p33: cons#(active(X1),X2) -> cons#(X1,X2) p34: cons#(X1,active(X2)) -> cons#(X1,X2) p35: from#(mark(X)) -> from#(X) p36: from#(active(X)) -> from#(X) p37: s#(mark(X)) -> s#(X) p38: s#(active(X)) -> s#(X) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p5, p9, p11, p12, p14, p15, p16, p18, p19, p21, p22, p24} {p25, p26} {p27, p28, p29, p30} {p31, p32, p33, p34} {p35, p36} {p37, p38} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(|2nd|(cons1(X,cons(Y,Z)))) -> mark#(Y) p2: mark#(s(X)) -> mark#(X) p3: mark#(s(X)) -> active#(s(mark(X))) p4: active#(from(X)) -> mark#(cons(X,from(s(X)))) p5: mark#(from(X)) -> mark#(X) p6: mark#(from(X)) -> active#(from(mark(X))) p7: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p8: mark#(cons(X1,X2)) -> mark#(X1) p9: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p10: mark#(cons1(X1,X2)) -> mark#(X2) p11: mark#(cons1(X1,X2)) -> mark#(X1) p12: mark#(cons1(X1,X2)) -> active#(cons1(mark(X1),mark(X2))) p13: mark#(|2nd|(X)) -> mark#(X) p14: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = x1 + 11 |2nd|_A(x1) = max{5, x1 + 3} cons1_A(x1,x2) = max{6, x1, x2} cons_A(x1,x2) = max{7, x1, x2} mark#_A(x1) = x1 + 11 s_A(x1) = max{7, x1} mark_A(x1) = max{1, x1} from_A(x1) = max{7, x1} active_A(x1) = x1 precedence: active# = |2nd| = cons1 = cons = mark# = s = mark = from = active partial status: pi(active#) = [] pi(|2nd|) = [] pi(cons1) = [] pi(cons) = [] pi(mark#) = [] pi(s) = [] pi(mark) = [] pi(from) = [] pi(active) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = 27 |2nd|_A(x1) = 0 cons1_A(x1,x2) = 0 cons_A(x1,x2) = 0 mark#_A(x1) = 27 s_A(x1) = 0 mark_A(x1) = 26 from_A(x1) = 0 active_A(x1) = x1 + 26 precedence: active# = mark# > from > |2nd| = cons1 = cons = s = mark = active partial status: pi(active#) = [] pi(|2nd|) = [] pi(cons1) = [] pi(cons) = [] pi(mark#) = [] pi(s) = [] pi(mark) = [] pi(from) = [] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(s(X)) -> active#(s(mark(X))) p3: active#(from(X)) -> mark#(cons(X,from(s(X)))) p4: mark#(from(X)) -> mark#(X) p5: mark#(from(X)) -> active#(from(mark(X))) p6: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p7: mark#(cons(X1,X2)) -> mark#(X1) p8: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p9: mark#(cons1(X1,X2)) -> mark#(X2) p10: mark#(cons1(X1,X2)) -> mark#(X1) p11: mark#(cons1(X1,X2)) -> active#(cons1(mark(X1),mark(X2))) p12: mark#(|2nd|(X)) -> mark#(X) p13: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) p3: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p4: mark#(|2nd|(X)) -> mark#(X) p5: mark#(cons1(X1,X2)) -> active#(cons1(mark(X1),mark(X2))) p6: active#(from(X)) -> mark#(cons(X,from(s(X)))) p7: mark#(cons1(X1,X2)) -> mark#(X1) p8: mark#(cons1(X1,X2)) -> mark#(X2) p9: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p10: mark#(cons(X1,X2)) -> mark#(X1) p11: mark#(from(X)) -> active#(from(mark(X))) p12: mark#(from(X)) -> mark#(X) p13: mark#(s(X)) -> active#(s(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 4 s_A(x1) = max{6, x1} |2nd|_A(x1) = max{12, x1 + 7} active#_A(x1) = x1 + 4 mark_A(x1) = max{4, x1} cons_A(x1,x2) = max{7, x1, x2} cons1_A(x1,x2) = max{6, x1, x2} from_A(x1) = max{7, x1} active_A(x1) = max{6, x1} precedence: mark# = s = |2nd| = active# = mark = cons = cons1 = from = active partial status: pi(mark#) = [] pi(s) = [] pi(|2nd|) = [] pi(active#) = [] pi(mark) = [] pi(cons) = [] pi(cons1) = [] pi(from) = [] pi(active) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 111 s_A(x1) = 109 |2nd|_A(x1) = 124 active#_A(x1) = 111 mark_A(x1) = 96 cons_A(x1,x2) = 81 cons1_A(x1,x2) = 86 from_A(x1) = 111 active_A(x1) = 96 precedence: mark# = s = |2nd| = active# = mark = from = active > cons1 > cons partial status: pi(mark#) = [] pi(s) = [] pi(|2nd|) = [] pi(active#) = [] pi(mark) = [] pi(cons) = [] pi(cons1) = [] pi(from) = [] pi(active) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) p3: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p4: mark#(cons1(X1,X2)) -> active#(cons1(mark(X1),mark(X2))) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: mark#(cons1(X1,X2)) -> mark#(X1) p7: mark#(cons1(X1,X2)) -> mark#(X2) p8: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p9: mark#(cons(X1,X2)) -> mark#(X1) p10: mark#(from(X)) -> active#(from(mark(X))) p11: mark#(from(X)) -> mark#(X) p12: mark#(s(X)) -> active#(s(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(s(X)) -> active#(s(mark(X))) p3: active#(from(X)) -> mark#(cons(X,from(s(X)))) p4: mark#(from(X)) -> mark#(X) p5: mark#(from(X)) -> active#(from(mark(X))) p6: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p7: mark#(cons(X1,X2)) -> mark#(X1) p8: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p9: mark#(cons1(X1,X2)) -> mark#(X2) p10: mark#(cons1(X1,X2)) -> mark#(X1) p11: mark#(cons1(X1,X2)) -> active#(cons1(mark(X1),mark(X2))) p12: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 4 s_A(x1) = max{1, x1} active#_A(x1) = x1 + 4 mark_A(x1) = x1 from_A(x1) = max{17, x1 + 15} cons_A(x1,x2) = max{x1 + 15, x2} |2nd|_A(x1) = max{0, x1 - 5} cons1_A(x1,x2) = max{8, x1, x2} active_A(x1) = x1 precedence: s = cons1 > mark# = active# = from > mark = cons = |2nd| = active partial status: pi(mark#) = [1] pi(s) = [] pi(active#) = [1] pi(mark) = [] pi(from) = [] pi(cons) = [] pi(|2nd|) = [] pi(cons1) = [] pi(active) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 46 s_A(x1) = 82 active#_A(x1) = 46 mark_A(x1) = 49 from_A(x1) = 237 cons_A(x1,x2) = 43 |2nd|_A(x1) = 45 cons1_A(x1,x2) = 44 active_A(x1) = 49 precedence: mark# = active# > s = mark = from = active > cons1 > cons = |2nd| partial status: pi(mark#) = [] pi(s) = [] pi(active#) = [] pi(mark) = [] pi(from) = [] pi(cons) = [] pi(|2nd|) = [] pi(cons1) = [] pi(active) = [] The next rules are strictly ordered: p4, p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(s(X)) -> active#(s(mark(X))) p3: active#(from(X)) -> mark#(cons(X,from(s(X)))) p4: mark#(from(X)) -> active#(from(mark(X))) p5: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p6: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p7: mark#(cons1(X1,X2)) -> mark#(X2) p8: mark#(cons1(X1,X2)) -> mark#(X1) p9: mark#(cons1(X1,X2)) -> active#(cons1(mark(X1),mark(X2))) p10: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) p3: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p4: mark#(cons1(X1,X2)) -> active#(cons1(mark(X1),mark(X2))) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: mark#(cons1(X1,X2)) -> mark#(X1) p7: mark#(cons1(X1,X2)) -> mark#(X2) p8: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p9: mark#(from(X)) -> active#(from(mark(X))) p10: mark#(s(X)) -> active#(s(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 17 s_A(x1) = max{3, x1} |2nd|_A(x1) = max{0, x1 - 4} active#_A(x1) = x1 + 17 mark_A(x1) = max{3, x1} cons_A(x1,x2) = max{8, x1 + 5, x2} cons1_A(x1,x2) = max{8, x1 + 3, x2} from_A(x1) = max{11, x1 + 7} active_A(x1) = x1 precedence: s = cons1 > mark# = active# > from > cons > |2nd| = mark = active partial status: pi(mark#) = [1] pi(s) = [] pi(|2nd|) = [] pi(active#) = [1] pi(mark) = [] pi(cons) = [] pi(cons1) = [] pi(from) = [] pi(active) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 145 s_A(x1) = 144 |2nd|_A(x1) = 140 active#_A(x1) = 145 mark_A(x1) = 144 cons_A(x1,x2) = 140 cons1_A(x1,x2) = 144 from_A(x1) = 144 active_A(x1) = 144 precedence: cons1 > mark = active > from > mark# = s = active# > cons > |2nd| partial status: pi(mark#) = [] pi(s) = [] pi(|2nd|) = [] pi(active#) = [] pi(mark) = [] pi(cons) = [] pi(cons1) = [] pi(from) = [] pi(active) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) p3: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p4: mark#(cons1(X1,X2)) -> active#(cons1(mark(X1),mark(X2))) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: mark#(cons1(X1,X2)) -> mark#(X2) p7: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p8: mark#(from(X)) -> active#(from(mark(X))) p9: mark#(s(X)) -> active#(s(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(s(X)) -> active#(s(mark(X))) p3: active#(from(X)) -> mark#(cons(X,from(s(X)))) p4: mark#(from(X)) -> active#(from(mark(X))) p5: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p6: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p7: mark#(cons1(X1,X2)) -> mark#(X2) p8: mark#(cons1(X1,X2)) -> active#(cons1(mark(X1),mark(X2))) p9: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 16 s_A(x1) = x1 active#_A(x1) = x1 + 16 mark_A(x1) = x1 from_A(x1) = max{24, x1 + 7} cons_A(x1,x2) = max{24, x1 + 7, x2} |2nd|_A(x1) = max{10, x1 - 5} cons1_A(x1,x2) = max{9, x1 + 6, x2} active_A(x1) = x1 precedence: mark# = s = active# = mark = from = cons = |2nd| = cons1 = active partial status: pi(mark#) = [] pi(s) = [] pi(active#) = [] pi(mark) = [] pi(from) = [] pi(cons) = [] pi(|2nd|) = [] pi(cons1) = [] pi(active) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 51 s_A(x1) = 50 active#_A(x1) = max{21, x1} mark_A(x1) = 67 from_A(x1) = 51 cons_A(x1,x2) = 51 |2nd|_A(x1) = 51 cons1_A(x1,x2) = 4 active_A(x1) = 67 precedence: |2nd| > mark# = active# = mark = active > from > s > cons > cons1 partial status: pi(mark#) = [] pi(s) = [] pi(active#) = [] pi(mark) = [] pi(from) = [] pi(cons) = [] pi(|2nd|) = [] pi(cons1) = [] pi(active) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: active#(from(X)) -> mark#(cons(X,from(s(X)))) p3: mark#(from(X)) -> active#(from(mark(X))) p4: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p5: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p6: mark#(cons1(X1,X2)) -> mark#(X2) p7: mark#(cons1(X1,X2)) -> active#(cons1(mark(X1),mark(X2))) p8: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) p3: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p4: mark#(cons1(X1,X2)) -> active#(cons1(mark(X1),mark(X2))) p5: active#(from(X)) -> mark#(cons(X,from(s(X)))) p6: mark#(cons1(X1,X2)) -> mark#(X2) p7: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p8: mark#(from(X)) -> active#(from(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 3 s_A(x1) = x1 |2nd|_A(x1) = max{0, x1 - 5} active#_A(x1) = x1 + 3 mark_A(x1) = x1 cons_A(x1,x2) = max{x1 + 9, x2} cons1_A(x1,x2) = max{x1 + 6, x2} from_A(x1) = x1 + 10 active_A(x1) = x1 precedence: s = cons1 = from > cons > |2nd| > mark# = active# > mark = active partial status: pi(mark#) = [1] pi(s) = [] pi(|2nd|) = [] pi(active#) = [1] pi(mark) = [] pi(cons) = [] pi(cons1) = [] pi(from) = [] pi(active) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 19 s_A(x1) = 19 |2nd|_A(x1) = 19 active#_A(x1) = max{11, x1} mark_A(x1) = 19 cons_A(x1,x2) = 19 cons1_A(x1,x2) = 10 from_A(x1) = 19 active_A(x1) = 19 precedence: from > mark# = s = |2nd| = active# = mark = cons = active > cons1 partial status: pi(mark#) = [] pi(s) = [] pi(|2nd|) = [] pi(active#) = [] pi(mark) = [] pi(cons) = [] pi(cons1) = [] pi(from) = [] pi(active) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) p3: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p4: active#(from(X)) -> mark#(cons(X,from(s(X)))) p5: mark#(cons1(X1,X2)) -> mark#(X2) p6: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p7: mark#(from(X)) -> active#(from(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(from(X)) -> active#(from(mark(X))) p3: active#(from(X)) -> mark#(cons(X,from(s(X)))) p4: mark#(cons(X1,X2)) -> active#(cons(mark(X1),X2)) p5: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p6: mark#(cons1(X1,X2)) -> mark#(X2) p7: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 4 s_A(x1) = x1 from_A(x1) = x1 active#_A(x1) = x1 + 4 mark_A(x1) = x1 cons_A(x1,x2) = max{x1 - 2, x2} |2nd|_A(x1) = x1 + 7 cons1_A(x1,x2) = x2 active_A(x1) = x1 precedence: s = cons1 > from > mark# = active# > mark = cons = |2nd| = active partial status: pi(mark#) = [1] pi(s) = [] pi(from) = [] pi(active#) = [1] pi(mark) = [] pi(cons) = [] pi(|2nd|) = [] pi(cons1) = [] pi(active) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 12 s_A(x1) = 9 from_A(x1) = 39 active#_A(x1) = max{10, x1 - 27} mark_A(x1) = 0 cons_A(x1,x2) = 25 |2nd|_A(x1) = 39 cons1_A(x1,x2) = 0 active_A(x1) = 0 precedence: cons > mark# = active# = |2nd| > from = mark = cons1 = active > s partial status: pi(mark#) = [] pi(s) = [] pi(from) = [] pi(active#) = [] pi(mark) = [] pi(cons) = [] pi(|2nd|) = [] pi(cons1) = [] pi(active) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(from(X)) -> active#(from(mark(X))) p3: active#(from(X)) -> mark#(cons(X,from(s(X)))) p4: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p5: mark#(cons1(X1,X2)) -> mark#(X2) p6: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) p3: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p4: mark#(cons1(X1,X2)) -> mark#(X2) p5: mark#(from(X)) -> active#(from(mark(X))) p6: active#(from(X)) -> mark#(cons(X,from(s(X)))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 6 s_A(x1) = x1 |2nd|_A(x1) = x1 + 11 active#_A(x1) = max{9, x1 + 6} mark_A(x1) = x1 cons_A(x1,x2) = max{x1 + 3, x2} cons1_A(x1,x2) = max{x1 + 2, x2} from_A(x1) = x1 + 3 active_A(x1) = x1 precedence: s = cons1 > from > mark# = |2nd| = active# = mark = cons = active partial status: pi(mark#) = [1] pi(s) = [] pi(|2nd|) = [] pi(active#) = [1] pi(mark) = [] pi(cons) = [] pi(cons1) = [] pi(from) = [] pi(active) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 54 s_A(x1) = 85 |2nd|_A(x1) = 167 active#_A(x1) = 54 mark_A(x1) = 70 cons_A(x1,x2) = 70 cons1_A(x1,x2) = 53 from_A(x1) = 81 active_A(x1) = 70 precedence: s = cons > |2nd| = mark = cons1 = from = active > mark# = active# partial status: pi(mark#) = [] pi(s) = [] pi(|2nd|) = [] pi(active#) = [] pi(mark) = [] pi(cons) = [] pi(cons1) = [] pi(from) = [] pi(active) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) p3: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p4: mark#(cons1(X1,X2)) -> mark#(X2) p5: mark#(from(X)) -> active#(from(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(from(X)) -> active#(from(mark(X))) p3: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p4: mark#(cons1(X1,X2)) -> mark#(X2) p5: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 5 s_A(x1) = x1 from_A(x1) = x1 + 3 active#_A(x1) = x1 + 5 mark_A(x1) = x1 |2nd|_A(x1) = x1 cons_A(x1,x2) = max{x1 + 3, x2} cons1_A(x1,x2) = max{x1 + 1, x2} active_A(x1) = x1 precedence: mark# = s = from = active# = mark = |2nd| = cons = cons1 = active partial status: pi(mark#) = [] pi(s) = [] pi(from) = [] pi(active#) = [] pi(mark) = [] pi(|2nd|) = [] pi(cons) = [] pi(cons1) = [] pi(active) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 63 s_A(x1) = 0 from_A(x1) = 46 active#_A(x1) = max{52, x1 - 4} mark_A(x1) = max{70, x1 + 3} |2nd|_A(x1) = 67 cons_A(x1,x2) = 62 cons1_A(x1,x2) = 67 active_A(x1) = 70 precedence: from = |2nd| > mark# = active# = cons > s = mark = cons1 = active partial status: pi(mark#) = [] pi(s) = [] pi(from) = [] pi(active#) = [] pi(mark) = [] pi(|2nd|) = [] pi(cons) = [] pi(cons1) = [] pi(active) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p3: mark#(cons1(X1,X2)) -> mark#(X2) p4: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(|2nd|(X)) -> active#(|2nd|(mark(X))) p3: active#(|2nd|(cons(X,X1))) -> mark#(|2nd|(cons1(X,X1))) p4: mark#(cons1(X1,X2)) -> mark#(X2) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = ((0,1),(0,1)) x1 + (2,0) s_A(x1) = ((0,0),(0,1)) x1 + (1,1) |2nd|_A(x1) = ((1,0),(1,0)) x1 + (4,4) active#_A(x1) = x1 + (1,0) mark_A(x1) = x1 cons_A(x1,x2) = ((0,0),(1,1)) x1 + ((0,1),(0,0)) x2 + (6,1) cons1_A(x1,x2) = ((0,1),(0,1)) x2 + (3,11) active_A(x1) = x1 from_A(x1) = ((0,1),(1,1)) x1 + (10,1) precedence: mark > mark# = cons1 > s = |2nd| = active# = cons = active = from partial status: pi(mark#) = [] pi(s) = [] pi(|2nd|) = [] pi(active#) = [1] pi(mark) = [] pi(cons) = [] pi(cons1) = [] pi(active) = [] pi(from) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: mark#_A(x1) = (3,2) s_A(x1) = (4,1) |2nd|_A(x1) = (2,0) active#_A(x1) = (1,1) mark_A(x1) = (1,0) cons_A(x1,x2) = (0,0) cons1_A(x1,x2) = (0,0) active_A(x1) = (1,0) from_A(x1) = (5,1) precedence: mark# = |2nd| = mark = active > from > cons1 > cons > active# > s partial status: pi(mark#) = [] pi(s) = [] pi(|2nd|) = [] pi(active#) = [] pi(mark) = [] pi(cons) = [] pi(cons1) = [] pi(active) = [] pi(from) = [] The next rules are strictly ordered: p2, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(cons1(X1,X2)) -> mark#(X2) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(X)) -> mark#(X) p2: mark#(cons1(X1,X2)) -> mark#(X2) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 4 s_A(x1) = max{1, x1} cons1_A(x1,x2) = max{x1 - 1, x2} precedence: mark# = s = cons1 partial status: pi(mark#) = [1] pi(s) = [1] pi(cons1) = [2] 2. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{1, x1} s_A(x1) = max{1, x1} cons1_A(x1,x2) = x2 precedence: mark# = s = cons1 partial status: pi(mark#) = [1] pi(s) = [1] pi(cons1) = [2] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |2nd|#(mark(X)) -> |2nd|#(X) p2: |2nd|#(active(X)) -> |2nd|#(X) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: |2nd|#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: |2nd|# = mark = active partial status: pi(|2nd|#) = [] pi(mark) = [] pi(active) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: |2nd|#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: |2nd|# = mark = active partial status: pi(|2nd|#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons1#(mark(X1),X2) -> cons1#(X1,X2) p2: cons1#(X1,active(X2)) -> cons1#(X1,X2) p3: cons1#(active(X1),X2) -> cons1#(X1,X2) p4: cons1#(X1,mark(X2)) -> cons1#(X1,X2) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: cons1#_A(x1,x2) = max{2, x1 + 1, x2 + 1} mark_A(x1) = max{1, x1} active_A(x1) = max{1, x1} precedence: cons1# = mark = active partial status: pi(cons1#) = [1, 2] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: cons1#_A(x1,x2) = max{x1 + 1, x2 - 1} mark_A(x1) = x1 active_A(x1) = x1 precedence: cons1# = mark = active partial status: pi(cons1#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) p4: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{2, x1 + 1, x2 + 1} mark_A(x1) = max{1, x1} active_A(x1) = max{1, x1} precedence: cons# = mark = active partial status: pi(cons#) = [1, 2] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{x1 + 1, x2 - 1} mark_A(x1) = x1 active_A(x1) = x1 precedence: cons# = mark = active partial status: pi(cons#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: from#(mark(X)) -> from#(X) p2: from#(active(X)) -> from#(X) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: from#_A(x1) = x1 + 2 mark_A(x1) = x1 active_A(x1) = x1 + 2 precedence: mark > active > from# partial status: pi(from#) = [1] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: from#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: from# = mark = active partial status: pi(from#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(|2nd|(cons1(X,cons(Y,Z)))) -> mark(Y) r2: active(|2nd|(cons(X,X1))) -> mark(|2nd|(cons1(X,X1))) r3: active(from(X)) -> mark(cons(X,from(s(X)))) r4: mark(|2nd|(X)) -> active(|2nd|(mark(X))) r5: mark(cons1(X1,X2)) -> active(cons1(mark(X1),mark(X2))) r6: mark(cons(X1,X2)) -> active(cons(mark(X1),X2)) r7: mark(from(X)) -> active(from(mark(X))) r8: mark(s(X)) -> active(s(mark(X))) r9: |2nd|(mark(X)) -> |2nd|(X) r10: |2nd|(active(X)) -> |2nd|(X) r11: cons1(mark(X1),X2) -> cons1(X1,X2) r12: cons1(X1,mark(X2)) -> cons1(X1,X2) r13: cons1(active(X1),X2) -> cons1(X1,X2) r14: cons1(X1,active(X2)) -> cons1(X1,X2) r15: cons(mark(X1),X2) -> cons(X1,X2) r16: cons(X1,mark(X2)) -> cons(X1,X2) r17: cons(active(X1),X2) -> cons(X1,X2) r18: cons(X1,active(X2)) -> cons(X1,X2) r19: from(mark(X)) -> from(X) r20: from(active(X)) -> from(X) r21: s(mark(X)) -> s(X) r22: s(active(X)) -> s(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = max{6, x1 + 4} mark_A(x1) = max{4, x1 + 3} active_A(x1) = max{2, x1 + 1} precedence: s# = mark = active partial status: pi(s#) = [1] pi(mark) = [1] pi(active) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: s# = mark = active partial status: pi(s#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.