YES We show the termination of the TRS R: first(|0|(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(n__s(X))) first(X1,X2) -> n__first(X1,X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) p3: activate#(n__first(X1,X2)) -> activate#(X1) p4: activate#(n__first(X1,X2)) -> activate#(X2) p5: activate#(n__from(X)) -> from#(activate(X)) p6: activate#(n__from(X)) -> activate#(X) p7: activate#(n__s(X)) -> s#(activate(X)) p8: activate#(n__s(X)) -> activate#(X) and R consists of: r1: first(|0|(),X) -> nil() r2: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: first(X1,X2) -> n__first(X1,X2) r5: from(X) -> n__from(X) r6: s(X) -> n__s(X) r7: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r8: activate(n__from(X)) -> from(activate(X)) r9: activate(n__s(X)) -> s(activate(X)) r10: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p6, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__s(X)) -> activate#(X) p3: activate#(n__from(X)) -> activate#(X) p4: activate#(n__first(X1,X2)) -> activate#(X2) p5: activate#(n__first(X1,X2)) -> activate#(X1) p6: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) and R consists of: r1: first(|0|(),X) -> nil() r2: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: first(X1,X2) -> n__first(X1,X2) r5: from(X) -> n__from(X) r6: s(X) -> n__s(X) r7: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r8: activate(n__from(X)) -> from(activate(X)) r9: activate(n__s(X)) -> s(activate(X)) r10: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: first#_A(x1,x2) = max{x1 + 4, x2 + 5} s_A(x1) = x1 cons_A(x1,x2) = max{x1 + 2, x2} activate#_A(x1) = x1 + 5 n__s_A(x1) = x1 n__from_A(x1) = max{6, x1 + 4} n__first_A(x1,x2) = max{14, x1 + 11, x2 + 8} activate_A(x1) = max{2, x1} first_A(x1,x2) = max{14, x1 + 11, x2 + 8} |0|_A = 1 nil_A = 0 from_A(x1) = max{6, x1 + 4} precedence: first# = activate# = activate = first > |0| = from > cons = n__from > s > n__s = n__first > nil partial status: pi(first#) = [2] pi(s) = [1] pi(cons) = [2] pi(activate#) = [1] pi(n__s) = [1] pi(n__from) = [1] pi(n__first) = [1, 2] pi(activate) = [1] pi(first) = [2] pi(|0|) = [] pi(nil) = [] pi(from) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: first#_A(x1,x2) = 50 s_A(x1) = 15 cons_A(x1,x2) = 52 activate#_A(x1) = 50 n__s_A(x1) = x1 + 15 n__from_A(x1) = max{42, x1 + 29} n__first_A(x1,x2) = max{34, x1 + 7} activate_A(x1) = max{44, x1 + 16} first_A(x1,x2) = max{51, x2 + 33} |0|_A = 26 nil_A = 32 from_A(x1) = max{45, x1 + 14} precedence: first# = s = cons = activate# = n__s = n__from = n__first = activate = first = |0| = nil = from partial status: pi(first#) = [] pi(s) = [] pi(cons) = [] pi(activate#) = [] pi(n__s) = [1] pi(n__from) = [1] pi(n__first) = [] pi(activate) = [1] pi(first) = [2] pi(|0|) = [] pi(nil) = [] pi(from) = [] The next rules are strictly ordered: p2, p3, p4, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) and R consists of: r1: first(|0|(),X) -> nil() r2: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: first(X1,X2) -> n__first(X1,X2) r5: from(X) -> n__from(X) r6: s(X) -> n__s(X) r7: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r8: activate(n__from(X)) -> from(activate(X)) r9: activate(n__s(X)) -> s(activate(X)) r10: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) and R consists of: r1: first(|0|(),X) -> nil() r2: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: first(X1,X2) -> n__first(X1,X2) r5: from(X) -> n__from(X) r6: s(X) -> n__s(X) r7: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r8: activate(n__from(X)) -> from(activate(X)) r9: activate(n__s(X)) -> s(activate(X)) r10: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: first#_A(x1,x2) = max{0, x1 - 12, x2 - 7} s_A(x1) = max{19, x1 + 11} cons_A(x1,x2) = x2 + 7 activate#_A(x1) = max{0, x1 - 2} n__first_A(x1,x2) = max{x1, x2 - 4} activate_A(x1) = max{7, x1} first_A(x1,x2) = max{x1, x2 - 4} |0|_A = 1 nil_A = 0 from_A(x1) = 7 n__from_A(x1) = 0 n__s_A(x1) = max{19, x1 + 11} precedence: activate = first > s > nil > from > |0| > n__from > n__first = n__s > cons > activate# > first# partial status: pi(first#) = [] pi(s) = [] pi(cons) = [2] pi(activate#) = [] pi(n__first) = [] pi(activate) = [1] pi(first) = [] pi(|0|) = [] pi(nil) = [] pi(from) = [] pi(n__from) = [] pi(n__s) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: first#_A(x1,x2) = 0 s_A(x1) = 87 cons_A(x1,x2) = x2 + 9 activate#_A(x1) = 1 n__first_A(x1,x2) = 33 activate_A(x1) = max{34, x1 - 24} first_A(x1,x2) = 8 |0|_A = 30 nil_A = 29 from_A(x1) = 45 n__from_A(x1) = 35 n__s_A(x1) = x1 + 112 precedence: activate# > from > activate > first > cons = nil > n__from > s = n__s > n__first > |0| > first# partial status: pi(first#) = [] pi(s) = [] pi(cons) = [2] pi(activate#) = [] pi(n__first) = [] pi(activate) = [] pi(first) = [] pi(|0|) = [] pi(nil) = [] pi(from) = [] pi(n__from) = [] pi(n__s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) and R consists of: r1: first(|0|(),X) -> nil() r2: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r3: from(X) -> cons(X,n__from(n__s(X))) r4: first(X1,X2) -> n__first(X1,X2) r5: from(X) -> n__from(X) r6: s(X) -> n__s(X) r7: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r8: activate(n__from(X)) -> from(activate(X)) r9: activate(n__s(X)) -> s(activate(X)) r10: activate(X) -> X The estimated dependency graph contains the following SCCs: (no SCCs)