YES We show the termination of the TRS R: a__first(|0|(),X) -> nil() a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(|0|()) -> |0|() mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) mark(cons(X1,X2)) -> cons(mark(X1),X2) a__first(X1,X2) -> first(X1,X2) a__from(X) -> from(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p2: a__from#(X) -> mark#(X) p3: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) p4: mark#(first(X1,X2)) -> mark#(X1) p5: mark#(first(X1,X2)) -> mark#(X2) p6: mark#(from(X)) -> a__from#(mark(X)) p7: mark#(from(X)) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__first(|0|(),X) -> nil() r2: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(nil()) -> nil() r8: mark(s(X)) -> s(mark(X)) r9: mark(cons(X1,X2)) -> cons(mark(X1),X2) r10: a__first(X1,X2) -> first(X1,X2) r11: a__from(X) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(s(X)) -> mark#(X) p4: mark#(from(X)) -> mark#(X) p5: mark#(from(X)) -> a__from#(mark(X)) p6: a__from#(X) -> mark#(X) p7: mark#(first(X1,X2)) -> mark#(X2) p8: mark#(first(X1,X2)) -> mark#(X1) p9: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) and R consists of: r1: a__first(|0|(),X) -> nil() r2: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(nil()) -> nil() r8: mark(s(X)) -> s(mark(X)) r9: mark(cons(X1,X2)) -> cons(mark(X1),X2) r10: a__first(X1,X2) -> first(X1,X2) r11: a__from(X) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a__first#_A(x1,x2) = max{14, x1 + 2, x2 + 5} s_A(x1) = max{1, x1} cons_A(x1,x2) = max{20, x1 + 11, x2} mark#_A(x1) = max{1, x1} from_A(x1) = max{23, x1 + 21} a__from#_A(x1) = x1 + 1 mark_A(x1) = max{12, x1 + 10} first_A(x1,x2) = max{24, x1 + 18, x2 + 15} a__first_A(x1,x2) = max{24, x1 + 18, x2 + 15} |0|_A = 13 nil_A = 0 a__from_A(x1) = max{23, x1 + 21} precedence: mark = a__first > a__from > s = cons = from > |0| > first > mark# = a__from# > a__first# = nil partial status: pi(a__first#) = [1, 2] pi(s) = [1] pi(cons) = [1, 2] pi(mark#) = [1] pi(from) = [1] pi(a__from#) = [1] pi(mark) = [1] pi(first) = [1, 2] pi(a__first) = [] pi(|0|) = [] pi(nil) = [] pi(a__from) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: a__first#_A(x1,x2) = max{2, x1 - 2, x2} s_A(x1) = max{12, x1 + 4} cons_A(x1,x2) = max{x1 + 2, x2 - 6} mark#_A(x1) = max{2, x1 + 1} from_A(x1) = max{62, x1 + 32} a__from#_A(x1) = x1 + 3 mark_A(x1) = x1 + 28 first_A(x1,x2) = max{x1 + 26, x2 + 28} a__first_A(x1,x2) = 19 |0|_A = 20 nil_A = 31 a__from_A(x1) = max{61, x1 + 30} precedence: first > s = mark = a__from > cons > a__first# = mark# = a__from# > a__first = |0| = nil > from partial status: pi(a__first#) = [2] pi(s) = [] pi(cons) = [1] pi(mark#) = [1] pi(from) = [] pi(a__from#) = [] pi(mark) = [1] pi(first) = [2] pi(a__first) = [] pi(|0|) = [] pi(nil) = [] pi(a__from) = [] The next rules are strictly ordered: p2, p3, p4, p5, p6, p7, p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) and R consists of: r1: a__first(|0|(),X) -> nil() r2: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(nil()) -> nil() r8: mark(s(X)) -> s(mark(X)) r9: mark(cons(X1,X2)) -> cons(mark(X1),X2) r10: a__first(X1,X2) -> first(X1,X2) r11: a__from(X) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) and R consists of: r1: a__first(|0|(),X) -> nil() r2: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(nil()) -> nil() r8: mark(s(X)) -> s(mark(X)) r9: mark(cons(X1,X2)) -> cons(mark(X1),X2) r10: a__first(X1,X2) -> first(X1,X2) r11: a__from(X) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a__first#_A(x1,x2) = max{32, x1 + 30, x2 + 26} s_A(x1) = max{3, x1} cons_A(x1,x2) = max{25, x1 + 9, x2} mark#_A(x1) = x1 + 10 first_A(x1,x2) = max{x1 + 29, x2 + 26} mark_A(x1) = x1 + 8 a__first_A(x1,x2) = max{30, x1 + 29, x2 + 26} |0|_A = 26 nil_A = 25 a__from_A(x1) = max{25, x1 + 17} from_A(x1) = x1 + 17 precedence: a__first# = mark# = mark > s = a__first > first = |0| = nil = a__from > cons = from partial status: pi(a__first#) = [1, 2] pi(s) = [1] pi(cons) = [1, 2] pi(mark#) = [1] pi(first) = [1, 2] pi(mark) = [1] pi(a__first) = [1, 2] pi(|0|) = [] pi(nil) = [] pi(a__from) = [1] pi(from) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: a__first#_A(x1,x2) = max{x1 + 10, x2 + 10} s_A(x1) = x1 + 6 cons_A(x1,x2) = max{x1 + 8, x2 + 8} mark#_A(x1) = x1 + 10 first_A(x1,x2) = max{x1 + 4, x2 + 1} mark_A(x1) = x1 a__first_A(x1,x2) = max{x1 + 5, x2 + 7} |0|_A = 2 nil_A = 6 a__from_A(x1) = max{4, x1 + 2} from_A(x1) = 1 precedence: a__first# = s = cons = mark# = first = mark = a__first = |0| = nil = a__from = from partial status: pi(a__first#) = [] pi(s) = [1] pi(cons) = [1, 2] pi(mark#) = [1] pi(first) = [2] pi(mark) = [1] pi(a__first) = [] pi(|0|) = [] pi(nil) = [] pi(a__from) = [] pi(from) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.