YES We show the termination of the TRS R: active(incr(nil())) -> mark(nil()) active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) active(adx(nil())) -> mark(nil()) active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) active(nats()) -> mark(adx(zeros())) active(zeros()) -> mark(cons(|0|(),zeros())) active(head(cons(X,L))) -> mark(X) active(tail(cons(X,L))) -> mark(L) active(incr(X)) -> incr(active(X)) active(cons(X1,X2)) -> cons(active(X1),X2) active(s(X)) -> s(active(X)) active(adx(X)) -> adx(active(X)) active(head(X)) -> head(active(X)) active(tail(X)) -> tail(active(X)) incr(mark(X)) -> mark(incr(X)) cons(mark(X1),X2) -> mark(cons(X1,X2)) s(mark(X)) -> mark(s(X)) adx(mark(X)) -> mark(adx(X)) head(mark(X)) -> mark(head(X)) tail(mark(X)) -> mark(tail(X)) proper(incr(X)) -> incr(proper(X)) proper(nil()) -> ok(nil()) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(s(X)) -> s(proper(X)) proper(adx(X)) -> adx(proper(X)) proper(nats()) -> ok(nats()) proper(zeros()) -> ok(zeros()) proper(|0|()) -> ok(|0|()) proper(head(X)) -> head(proper(X)) proper(tail(X)) -> tail(proper(X)) incr(ok(X)) -> ok(incr(X)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) s(ok(X)) -> ok(s(X)) adx(ok(X)) -> ok(adx(X)) head(ok(X)) -> ok(head(X)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(incr(cons(X,L))) -> cons#(s(X),incr(L)) p2: active#(incr(cons(X,L))) -> s#(X) p3: active#(incr(cons(X,L))) -> incr#(L) p4: active#(adx(cons(X,L))) -> incr#(cons(X,adx(L))) p5: active#(adx(cons(X,L))) -> cons#(X,adx(L)) p6: active#(adx(cons(X,L))) -> adx#(L) p7: active#(nats()) -> adx#(zeros()) p8: active#(zeros()) -> cons#(|0|(),zeros()) p9: active#(incr(X)) -> incr#(active(X)) p10: active#(incr(X)) -> active#(X) p11: active#(cons(X1,X2)) -> cons#(active(X1),X2) p12: active#(cons(X1,X2)) -> active#(X1) p13: active#(s(X)) -> s#(active(X)) p14: active#(s(X)) -> active#(X) p15: active#(adx(X)) -> adx#(active(X)) p16: active#(adx(X)) -> active#(X) p17: active#(head(X)) -> head#(active(X)) p18: active#(head(X)) -> active#(X) p19: active#(tail(X)) -> tail#(active(X)) p20: active#(tail(X)) -> active#(X) p21: incr#(mark(X)) -> incr#(X) p22: cons#(mark(X1),X2) -> cons#(X1,X2) p23: s#(mark(X)) -> s#(X) p24: adx#(mark(X)) -> adx#(X) p25: head#(mark(X)) -> head#(X) p26: tail#(mark(X)) -> tail#(X) p27: proper#(incr(X)) -> incr#(proper(X)) p28: proper#(incr(X)) -> proper#(X) p29: proper#(cons(X1,X2)) -> cons#(proper(X1),proper(X2)) p30: proper#(cons(X1,X2)) -> proper#(X1) p31: proper#(cons(X1,X2)) -> proper#(X2) p32: proper#(s(X)) -> s#(proper(X)) p33: proper#(s(X)) -> proper#(X) p34: proper#(adx(X)) -> adx#(proper(X)) p35: proper#(adx(X)) -> proper#(X) p36: proper#(head(X)) -> head#(proper(X)) p37: proper#(head(X)) -> proper#(X) p38: proper#(tail(X)) -> tail#(proper(X)) p39: proper#(tail(X)) -> proper#(X) p40: incr#(ok(X)) -> incr#(X) p41: cons#(ok(X1),ok(X2)) -> cons#(X1,X2) p42: s#(ok(X)) -> s#(X) p43: adx#(ok(X)) -> adx#(X) p44: head#(ok(X)) -> head#(X) p45: tail#(ok(X)) -> tail#(X) p46: top#(mark(X)) -> top#(proper(X)) p47: top#(mark(X)) -> proper#(X) p48: top#(ok(X)) -> top#(active(X)) p49: top#(ok(X)) -> active#(X) and R consists of: r1: active(incr(nil())) -> mark(nil()) r2: active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) r3: active(adx(nil())) -> mark(nil()) r4: active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) r5: active(nats()) -> mark(adx(zeros())) r6: active(zeros()) -> mark(cons(|0|(),zeros())) r7: active(head(cons(X,L))) -> mark(X) r8: active(tail(cons(X,L))) -> mark(L) r9: active(incr(X)) -> incr(active(X)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(adx(X)) -> adx(active(X)) r13: active(head(X)) -> head(active(X)) r14: active(tail(X)) -> tail(active(X)) r15: incr(mark(X)) -> mark(incr(X)) r16: cons(mark(X1),X2) -> mark(cons(X1,X2)) r17: s(mark(X)) -> mark(s(X)) r18: adx(mark(X)) -> mark(adx(X)) r19: head(mark(X)) -> mark(head(X)) r20: tail(mark(X)) -> mark(tail(X)) r21: proper(incr(X)) -> incr(proper(X)) r22: proper(nil()) -> ok(nil()) r23: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r24: proper(s(X)) -> s(proper(X)) r25: proper(adx(X)) -> adx(proper(X)) r26: proper(nats()) -> ok(nats()) r27: proper(zeros()) -> ok(zeros()) r28: proper(|0|()) -> ok(|0|()) r29: proper(head(X)) -> head(proper(X)) r30: proper(tail(X)) -> tail(proper(X)) r31: incr(ok(X)) -> ok(incr(X)) r32: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r33: s(ok(X)) -> ok(s(X)) r34: adx(ok(X)) -> ok(adx(X)) r35: head(ok(X)) -> ok(head(X)) r36: tail(ok(X)) -> ok(tail(X)) r37: top(mark(X)) -> top(proper(X)) r38: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p46, p48} {p10, p12, p14, p16, p18, p20} {p28, p30, p31, p33, p35, p37, p39} {p22, p41} {p23, p42} {p21, p40} {p24, p43} {p25, p44} {p26, p45} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(incr(nil())) -> mark(nil()) r2: active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) r3: active(adx(nil())) -> mark(nil()) r4: active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) r5: active(nats()) -> mark(adx(zeros())) r6: active(zeros()) -> mark(cons(|0|(),zeros())) r7: active(head(cons(X,L))) -> mark(X) r8: active(tail(cons(X,L))) -> mark(L) r9: active(incr(X)) -> incr(active(X)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(adx(X)) -> adx(active(X)) r13: active(head(X)) -> head(active(X)) r14: active(tail(X)) -> tail(active(X)) r15: incr(mark(X)) -> mark(incr(X)) r16: cons(mark(X1),X2) -> mark(cons(X1,X2)) r17: s(mark(X)) -> mark(s(X)) r18: adx(mark(X)) -> mark(adx(X)) r19: head(mark(X)) -> mark(head(X)) r20: tail(mark(X)) -> mark(tail(X)) r21: proper(incr(X)) -> incr(proper(X)) r22: proper(nil()) -> ok(nil()) r23: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r24: proper(s(X)) -> s(proper(X)) r25: proper(adx(X)) -> adx(proper(X)) r26: proper(nats()) -> ok(nats()) r27: proper(zeros()) -> ok(zeros()) r28: proper(|0|()) -> ok(|0|()) r29: proper(head(X)) -> head(proper(X)) r30: proper(tail(X)) -> tail(proper(X)) r31: incr(ok(X)) -> ok(incr(X)) r32: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r33: s(ok(X)) -> ok(s(X)) r34: adx(ok(X)) -> ok(adx(X)) r35: head(ok(X)) -> ok(head(X)) r36: tail(ok(X)) -> ok(tail(X)) r37: top(mark(X)) -> top(proper(X)) r38: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((1,0),(0,0)) x1 ok_A(x1) = ((1,0),(0,0)) x1 + (0,4) active_A(x1) = ((1,0),(1,1)) x1 + (0,6) mark_A(x1) = ((1,0),(0,0)) x1 proper_A(x1) = ((1,0),(1,0)) x1 + (0,12) incr_A(x1) = ((1,0),(0,0)) x1 + (0,5) cons_A(x1,x2) = ((1,0),(0,0)) x1 + x2 s_A(x1) = ((1,0),(1,0)) x1 + (0,12) adx_A(x1) = x1 + (5,5) head_A(x1) = ((1,0),(0,0)) x1 + (1,5) tail_A(x1) = x1 + (5,5) nil_A() = (1,14) nats_A() = (7,1) zeros_A() = (1,2) |0|_A() = (0,3) precedence: top# = ok = active = mark = proper = incr = cons = s = adx = head = tail = nil = nats = zeros = |0| partial status: pi(top#) = [] pi(ok) = [] pi(active) = [] pi(mark) = [] pi(proper) = [] pi(incr) = [] pi(cons) = [] pi(s) = [] pi(adx) = [] pi(head) = [] pi(tail) = [] pi(nil) = [] pi(nats) = [] pi(zeros) = [] pi(|0|) = [] 2. weighted path order base order: matrix interpretations: carrier: N^2 order: standard order interpretations: top#_A(x1) = ((0,1),(0,1)) x1 + (1,1) ok_A(x1) = ((0,0),(0,1)) x1 + (3,4) active_A(x1) = x1 + (1,0) mark_A(x1) = ((0,1),(0,1)) x1 + (13,19) proper_A(x1) = ((1,1),(0,1)) x1 + (5,6) incr_A(x1) = ((1,1),(0,1)) x1 + (12,24) cons_A(x1,x2) = ((1,1),(0,1)) x1 + ((0,1),(0,0)) x2 + (7,18) s_A(x1) = ((0,1),(0,1)) x1 + (0,5) adx_A(x1) = x1 + (71,43) head_A(x1) = ((1,1),(0,1)) x1 + (4,20) tail_A(x1) = ((0,1),(0,1)) x1 + (4,5) nil_A() = (2,62) nats_A() = (103,37) zeros_A() = (31,38) |0|_A() = (2,1) precedence: active > incr = s > mark > proper = tail > zeros > nil = |0| > nats > top# = ok = cons = adx = head partial status: pi(top#) = [] pi(ok) = [] pi(active) = [1] pi(mark) = [] pi(proper) = [] pi(incr) = [] pi(cons) = [] pi(s) = [] pi(adx) = [] pi(head) = [] pi(tail) = [] pi(nil) = [] pi(nats) = [] pi(zeros) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(incr(nil())) -> mark(nil()) r2: active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) r3: active(adx(nil())) -> mark(nil()) r4: active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) r5: active(nats()) -> mark(adx(zeros())) r6: active(zeros()) -> mark(cons(|0|(),zeros())) r7: active(head(cons(X,L))) -> mark(X) r8: active(tail(cons(X,L))) -> mark(L) r9: active(incr(X)) -> incr(active(X)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(adx(X)) -> adx(active(X)) r13: active(head(X)) -> head(active(X)) r14: active(tail(X)) -> tail(active(X)) r15: incr(mark(X)) -> mark(incr(X)) r16: cons(mark(X1),X2) -> mark(cons(X1,X2)) r17: s(mark(X)) -> mark(s(X)) r18: adx(mark(X)) -> mark(adx(X)) r19: head(mark(X)) -> mark(head(X)) r20: tail(mark(X)) -> mark(tail(X)) r21: proper(incr(X)) -> incr(proper(X)) r22: proper(nil()) -> ok(nil()) r23: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r24: proper(s(X)) -> s(proper(X)) r25: proper(adx(X)) -> adx(proper(X)) r26: proper(nats()) -> ok(nats()) r27: proper(zeros()) -> ok(zeros()) r28: proper(|0|()) -> ok(|0|()) r29: proper(head(X)) -> head(proper(X)) r30: proper(tail(X)) -> tail(proper(X)) r31: incr(ok(X)) -> ok(incr(X)) r32: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r33: s(ok(X)) -> ok(s(X)) r34: adx(ok(X)) -> ok(adx(X)) r35: head(ok(X)) -> ok(head(X)) r36: tail(ok(X)) -> ok(tail(X)) r37: top(mark(X)) -> top(proper(X)) r38: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(incr(nil())) -> mark(nil()) r2: active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) r3: active(adx(nil())) -> mark(nil()) r4: active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) r5: active(nats()) -> mark(adx(zeros())) r6: active(zeros()) -> mark(cons(|0|(),zeros())) r7: active(head(cons(X,L))) -> mark(X) r8: active(tail(cons(X,L))) -> mark(L) r9: active(incr(X)) -> incr(active(X)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(adx(X)) -> adx(active(X)) r13: active(head(X)) -> head(active(X)) r14: active(tail(X)) -> tail(active(X)) r15: incr(mark(X)) -> mark(incr(X)) r16: cons(mark(X1),X2) -> mark(cons(X1,X2)) r17: s(mark(X)) -> mark(s(X)) r18: adx(mark(X)) -> mark(adx(X)) r19: head(mark(X)) -> mark(head(X)) r20: tail(mark(X)) -> mark(tail(X)) r21: proper(incr(X)) -> incr(proper(X)) r22: proper(nil()) -> ok(nil()) r23: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r24: proper(s(X)) -> s(proper(X)) r25: proper(adx(X)) -> adx(proper(X)) r26: proper(nats()) -> ok(nats()) r27: proper(zeros()) -> ok(zeros()) r28: proper(|0|()) -> ok(|0|()) r29: proper(head(X)) -> head(proper(X)) r30: proper(tail(X)) -> tail(proper(X)) r31: incr(ok(X)) -> ok(incr(X)) r32: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r33: s(ok(X)) -> ok(s(X)) r34: adx(ok(X)) -> ok(adx(X)) r35: head(ok(X)) -> ok(head(X)) r36: tail(ok(X)) -> ok(tail(X)) r37: top(mark(X)) -> top(proper(X)) r38: top(ok(X)) -> top(active(X)) The set of usable rules consists of r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: top#_A(x1) = max{41, x1 + 1} mark_A(x1) = max{62, x1 + 42} proper_A(x1) = x1 + 10 incr_A(x1) = x1 + 43 cons_A(x1,x2) = max{63, x1 + 57} s_A(x1) = max{18, x1} adx_A(x1) = max{41, x1 + 21} head_A(x1) = x1 + 19 tail_A(x1) = x1 + 6 ok_A(x1) = max{18, x1} nil_A = 8 nats_A = 8 zeros_A = 8 |0|_A = 9 precedence: proper > incr > cons = adx > head = nil = nats > top# = s = |0| > tail = ok > mark = zeros partial status: pi(top#) = [1] pi(mark) = [] pi(proper) = [] pi(incr) = [1] pi(cons) = [1] pi(s) = [] pi(adx) = [] pi(head) = [] pi(tail) = [1] pi(ok) = [] pi(nil) = [] pi(nats) = [] pi(zeros) = [] pi(|0|) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: top#_A(x1) = max{9, x1 + 1} mark_A(x1) = 12 proper_A(x1) = 10 incr_A(x1) = max{7, x1} cons_A(x1,x2) = x1 + 5 s_A(x1) = 15 adx_A(x1) = 15 head_A(x1) = 13 tail_A(x1) = max{7, x1 + 1} ok_A(x1) = 10 nil_A = 9 nats_A = 17 zeros_A = 15 |0|_A = 9 precedence: zeros > top# = mark = proper = incr = cons = s = |0| > adx = head = tail = ok = nil = nats partial status: pi(top#) = [1] pi(mark) = [] pi(proper) = [] pi(incr) = [1] pi(cons) = [1] pi(s) = [] pi(adx) = [] pi(head) = [] pi(tail) = [1] pi(ok) = [] pi(nil) = [] pi(nats) = [] pi(zeros) = [] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(tail(X)) -> active#(X) p2: active#(head(X)) -> active#(X) p3: active#(adx(X)) -> active#(X) p4: active#(s(X)) -> active#(X) p5: active#(cons(X1,X2)) -> active#(X1) p6: active#(incr(X)) -> active#(X) and R consists of: r1: active(incr(nil())) -> mark(nil()) r2: active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) r3: active(adx(nil())) -> mark(nil()) r4: active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) r5: active(nats()) -> mark(adx(zeros())) r6: active(zeros()) -> mark(cons(|0|(),zeros())) r7: active(head(cons(X,L))) -> mark(X) r8: active(tail(cons(X,L))) -> mark(L) r9: active(incr(X)) -> incr(active(X)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(adx(X)) -> adx(active(X)) r13: active(head(X)) -> head(active(X)) r14: active(tail(X)) -> tail(active(X)) r15: incr(mark(X)) -> mark(incr(X)) r16: cons(mark(X1),X2) -> mark(cons(X1,X2)) r17: s(mark(X)) -> mark(s(X)) r18: adx(mark(X)) -> mark(adx(X)) r19: head(mark(X)) -> mark(head(X)) r20: tail(mark(X)) -> mark(tail(X)) r21: proper(incr(X)) -> incr(proper(X)) r22: proper(nil()) -> ok(nil()) r23: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r24: proper(s(X)) -> s(proper(X)) r25: proper(adx(X)) -> adx(proper(X)) r26: proper(nats()) -> ok(nats()) r27: proper(zeros()) -> ok(zeros()) r28: proper(|0|()) -> ok(|0|()) r29: proper(head(X)) -> head(proper(X)) r30: proper(tail(X)) -> tail(proper(X)) r31: incr(ok(X)) -> ok(incr(X)) r32: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r33: s(ok(X)) -> ok(s(X)) r34: adx(ok(X)) -> ok(adx(X)) r35: head(ok(X)) -> ok(head(X)) r36: tail(ok(X)) -> ok(tail(X)) r37: top(mark(X)) -> top(proper(X)) r38: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{6, x1 + 4} tail_A(x1) = max{2, x1 + 1} head_A(x1) = max{2, x1 + 1} adx_A(x1) = max{6, x1 + 5} s_A(x1) = x1 + 6 cons_A(x1,x2) = max{x1 + 5, x2 + 7} incr_A(x1) = max{6, x1 + 3} precedence: active# > tail = head = adx = s = cons = incr partial status: pi(active#) = [1] pi(tail) = [1] pi(head) = [1] pi(adx) = [1] pi(s) = [1] pi(cons) = [1, 2] pi(incr) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{3, x1 + 2} tail_A(x1) = x1 head_A(x1) = x1 adx_A(x1) = x1 s_A(x1) = x1 cons_A(x1,x2) = max{x1, x2} incr_A(x1) = x1 + 3 precedence: incr > active# = tail = head = adx = s = cons partial status: pi(active#) = [1] pi(tail) = [1] pi(head) = [1] pi(adx) = [1] pi(s) = [1] pi(cons) = [1, 2] pi(incr) = [1] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(tail(X)) -> proper#(X) p2: proper#(head(X)) -> proper#(X) p3: proper#(adx(X)) -> proper#(X) p4: proper#(s(X)) -> proper#(X) p5: proper#(cons(X1,X2)) -> proper#(X2) p6: proper#(cons(X1,X2)) -> proper#(X1) p7: proper#(incr(X)) -> proper#(X) and R consists of: r1: active(incr(nil())) -> mark(nil()) r2: active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) r3: active(adx(nil())) -> mark(nil()) r4: active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) r5: active(nats()) -> mark(adx(zeros())) r6: active(zeros()) -> mark(cons(|0|(),zeros())) r7: active(head(cons(X,L))) -> mark(X) r8: active(tail(cons(X,L))) -> mark(L) r9: active(incr(X)) -> incr(active(X)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(adx(X)) -> adx(active(X)) r13: active(head(X)) -> head(active(X)) r14: active(tail(X)) -> tail(active(X)) r15: incr(mark(X)) -> mark(incr(X)) r16: cons(mark(X1),X2) -> mark(cons(X1,X2)) r17: s(mark(X)) -> mark(s(X)) r18: adx(mark(X)) -> mark(adx(X)) r19: head(mark(X)) -> mark(head(X)) r20: tail(mark(X)) -> mark(tail(X)) r21: proper(incr(X)) -> incr(proper(X)) r22: proper(nil()) -> ok(nil()) r23: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r24: proper(s(X)) -> s(proper(X)) r25: proper(adx(X)) -> adx(proper(X)) r26: proper(nats()) -> ok(nats()) r27: proper(zeros()) -> ok(zeros()) r28: proper(|0|()) -> ok(|0|()) r29: proper(head(X)) -> head(proper(X)) r30: proper(tail(X)) -> tail(proper(X)) r31: incr(ok(X)) -> ok(incr(X)) r32: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r33: s(ok(X)) -> ok(s(X)) r34: adx(ok(X)) -> ok(adx(X)) r35: head(ok(X)) -> ok(head(X)) r36: tail(ok(X)) -> ok(tail(X)) r37: top(mark(X)) -> top(proper(X)) r38: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: proper#_A(x1) = max{4, x1 + 2} tail_A(x1) = max{3, x1 + 1} head_A(x1) = max{1, x1} adx_A(x1) = max{1, x1} s_A(x1) = max{1, x1} cons_A(x1,x2) = max{x1, x2 + 2} incr_A(x1) = x1 + 4 precedence: proper# = tail = head = adx = s = cons = incr partial status: pi(proper#) = [1] pi(tail) = [1] pi(head) = [1] pi(adx) = [1] pi(s) = [1] pi(cons) = [1, 2] pi(incr) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: proper#_A(x1) = max{3, x1 + 2} tail_A(x1) = x1 + 1 head_A(x1) = x1 adx_A(x1) = x1 s_A(x1) = x1 cons_A(x1,x2) = max{x1, x2} incr_A(x1) = x1 + 3 precedence: proper# = tail = head = adx = s = cons = incr partial status: pi(proper#) = [1] pi(tail) = [1] pi(head) = [1] pi(adx) = [1] pi(s) = [1] pi(cons) = [1, 2] pi(incr) = [1] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(ok(X1),ok(X2)) -> cons#(X1,X2) and R consists of: r1: active(incr(nil())) -> mark(nil()) r2: active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) r3: active(adx(nil())) -> mark(nil()) r4: active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) r5: active(nats()) -> mark(adx(zeros())) r6: active(zeros()) -> mark(cons(|0|(),zeros())) r7: active(head(cons(X,L))) -> mark(X) r8: active(tail(cons(X,L))) -> mark(L) r9: active(incr(X)) -> incr(active(X)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(adx(X)) -> adx(active(X)) r13: active(head(X)) -> head(active(X)) r14: active(tail(X)) -> tail(active(X)) r15: incr(mark(X)) -> mark(incr(X)) r16: cons(mark(X1),X2) -> mark(cons(X1,X2)) r17: s(mark(X)) -> mark(s(X)) r18: adx(mark(X)) -> mark(adx(X)) r19: head(mark(X)) -> mark(head(X)) r20: tail(mark(X)) -> mark(tail(X)) r21: proper(incr(X)) -> incr(proper(X)) r22: proper(nil()) -> ok(nil()) r23: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r24: proper(s(X)) -> s(proper(X)) r25: proper(adx(X)) -> adx(proper(X)) r26: proper(nats()) -> ok(nats()) r27: proper(zeros()) -> ok(zeros()) r28: proper(|0|()) -> ok(|0|()) r29: proper(head(X)) -> head(proper(X)) r30: proper(tail(X)) -> tail(proper(X)) r31: incr(ok(X)) -> ok(incr(X)) r32: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r33: s(ok(X)) -> ok(s(X)) r34: adx(ok(X)) -> ok(adx(X)) r35: head(ok(X)) -> ok(head(X)) r36: tail(ok(X)) -> ok(tail(X)) r37: top(mark(X)) -> top(proper(X)) r38: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{2, x1 + 1, x2 + 1} mark_A(x1) = max{1, x1} ok_A(x1) = max{1, x1} precedence: cons# = mark = ok partial status: pi(cons#) = [1, 2] pi(mark) = [1] pi(ok) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{x1 + 1, x2 - 2} mark_A(x1) = x1 ok_A(x1) = max{4, x1 + 1} precedence: cons# = mark = ok partial status: pi(cons#) = [1] pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(ok(X)) -> s#(X) and R consists of: r1: active(incr(nil())) -> mark(nil()) r2: active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) r3: active(adx(nil())) -> mark(nil()) r4: active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) r5: active(nats()) -> mark(adx(zeros())) r6: active(zeros()) -> mark(cons(|0|(),zeros())) r7: active(head(cons(X,L))) -> mark(X) r8: active(tail(cons(X,L))) -> mark(L) r9: active(incr(X)) -> incr(active(X)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(adx(X)) -> adx(active(X)) r13: active(head(X)) -> head(active(X)) r14: active(tail(X)) -> tail(active(X)) r15: incr(mark(X)) -> mark(incr(X)) r16: cons(mark(X1),X2) -> mark(cons(X1,X2)) r17: s(mark(X)) -> mark(s(X)) r18: adx(mark(X)) -> mark(adx(X)) r19: head(mark(X)) -> mark(head(X)) r20: tail(mark(X)) -> mark(tail(X)) r21: proper(incr(X)) -> incr(proper(X)) r22: proper(nil()) -> ok(nil()) r23: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r24: proper(s(X)) -> s(proper(X)) r25: proper(adx(X)) -> adx(proper(X)) r26: proper(nats()) -> ok(nats()) r27: proper(zeros()) -> ok(zeros()) r28: proper(|0|()) -> ok(|0|()) r29: proper(head(X)) -> head(proper(X)) r30: proper(tail(X)) -> tail(proper(X)) r31: incr(ok(X)) -> ok(incr(X)) r32: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r33: s(ok(X)) -> ok(s(X)) r34: adx(ok(X)) -> ok(adx(X)) r35: head(ok(X)) -> ok(head(X)) r36: tail(ok(X)) -> ok(tail(X)) r37: top(mark(X)) -> top(proper(X)) r38: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = max{6, x1 + 4} mark_A(x1) = max{4, x1 + 3} ok_A(x1) = max{2, x1 + 1} precedence: s# = mark = ok partial status: pi(s#) = [1] pi(mark) = [1] pi(ok) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = x1 + 1 mark_A(x1) = x1 ok_A(x1) = x1 precedence: s# = mark = ok partial status: pi(s#) = [1] pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: incr#(mark(X)) -> incr#(X) p2: incr#(ok(X)) -> incr#(X) and R consists of: r1: active(incr(nil())) -> mark(nil()) r2: active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) r3: active(adx(nil())) -> mark(nil()) r4: active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) r5: active(nats()) -> mark(adx(zeros())) r6: active(zeros()) -> mark(cons(|0|(),zeros())) r7: active(head(cons(X,L))) -> mark(X) r8: active(tail(cons(X,L))) -> mark(L) r9: active(incr(X)) -> incr(active(X)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(adx(X)) -> adx(active(X)) r13: active(head(X)) -> head(active(X)) r14: active(tail(X)) -> tail(active(X)) r15: incr(mark(X)) -> mark(incr(X)) r16: cons(mark(X1),X2) -> mark(cons(X1,X2)) r17: s(mark(X)) -> mark(s(X)) r18: adx(mark(X)) -> mark(adx(X)) r19: head(mark(X)) -> mark(head(X)) r20: tail(mark(X)) -> mark(tail(X)) r21: proper(incr(X)) -> incr(proper(X)) r22: proper(nil()) -> ok(nil()) r23: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r24: proper(s(X)) -> s(proper(X)) r25: proper(adx(X)) -> adx(proper(X)) r26: proper(nats()) -> ok(nats()) r27: proper(zeros()) -> ok(zeros()) r28: proper(|0|()) -> ok(|0|()) r29: proper(head(X)) -> head(proper(X)) r30: proper(tail(X)) -> tail(proper(X)) r31: incr(ok(X)) -> ok(incr(X)) r32: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r33: s(ok(X)) -> ok(s(X)) r34: adx(ok(X)) -> ok(adx(X)) r35: head(ok(X)) -> ok(head(X)) r36: tail(ok(X)) -> ok(tail(X)) r37: top(mark(X)) -> top(proper(X)) r38: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: incr#_A(x1) = x1 + 1 mark_A(x1) = x1 ok_A(x1) = x1 precedence: incr# = mark = ok partial status: pi(incr#) = [] pi(mark) = [] pi(ok) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: incr#_A(x1) = x1 + 1 mark_A(x1) = x1 ok_A(x1) = x1 precedence: incr# = mark = ok partial status: pi(incr#) = [1] pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: adx#(mark(X)) -> adx#(X) p2: adx#(ok(X)) -> adx#(X) and R consists of: r1: active(incr(nil())) -> mark(nil()) r2: active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) r3: active(adx(nil())) -> mark(nil()) r4: active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) r5: active(nats()) -> mark(adx(zeros())) r6: active(zeros()) -> mark(cons(|0|(),zeros())) r7: active(head(cons(X,L))) -> mark(X) r8: active(tail(cons(X,L))) -> mark(L) r9: active(incr(X)) -> incr(active(X)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(adx(X)) -> adx(active(X)) r13: active(head(X)) -> head(active(X)) r14: active(tail(X)) -> tail(active(X)) r15: incr(mark(X)) -> mark(incr(X)) r16: cons(mark(X1),X2) -> mark(cons(X1,X2)) r17: s(mark(X)) -> mark(s(X)) r18: adx(mark(X)) -> mark(adx(X)) r19: head(mark(X)) -> mark(head(X)) r20: tail(mark(X)) -> mark(tail(X)) r21: proper(incr(X)) -> incr(proper(X)) r22: proper(nil()) -> ok(nil()) r23: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r24: proper(s(X)) -> s(proper(X)) r25: proper(adx(X)) -> adx(proper(X)) r26: proper(nats()) -> ok(nats()) r27: proper(zeros()) -> ok(zeros()) r28: proper(|0|()) -> ok(|0|()) r29: proper(head(X)) -> head(proper(X)) r30: proper(tail(X)) -> tail(proper(X)) r31: incr(ok(X)) -> ok(incr(X)) r32: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r33: s(ok(X)) -> ok(s(X)) r34: adx(ok(X)) -> ok(adx(X)) r35: head(ok(X)) -> ok(head(X)) r36: tail(ok(X)) -> ok(tail(X)) r37: top(mark(X)) -> top(proper(X)) r38: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: adx#_A(x1) = x1 + 1 mark_A(x1) = x1 ok_A(x1) = x1 precedence: adx# = mark = ok partial status: pi(adx#) = [] pi(mark) = [] pi(ok) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: adx#_A(x1) = x1 + 1 mark_A(x1) = x1 ok_A(x1) = x1 precedence: adx# = mark = ok partial status: pi(adx#) = [1] pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: head#(mark(X)) -> head#(X) p2: head#(ok(X)) -> head#(X) and R consists of: r1: active(incr(nil())) -> mark(nil()) r2: active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) r3: active(adx(nil())) -> mark(nil()) r4: active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) r5: active(nats()) -> mark(adx(zeros())) r6: active(zeros()) -> mark(cons(|0|(),zeros())) r7: active(head(cons(X,L))) -> mark(X) r8: active(tail(cons(X,L))) -> mark(L) r9: active(incr(X)) -> incr(active(X)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(adx(X)) -> adx(active(X)) r13: active(head(X)) -> head(active(X)) r14: active(tail(X)) -> tail(active(X)) r15: incr(mark(X)) -> mark(incr(X)) r16: cons(mark(X1),X2) -> mark(cons(X1,X2)) r17: s(mark(X)) -> mark(s(X)) r18: adx(mark(X)) -> mark(adx(X)) r19: head(mark(X)) -> mark(head(X)) r20: tail(mark(X)) -> mark(tail(X)) r21: proper(incr(X)) -> incr(proper(X)) r22: proper(nil()) -> ok(nil()) r23: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r24: proper(s(X)) -> s(proper(X)) r25: proper(adx(X)) -> adx(proper(X)) r26: proper(nats()) -> ok(nats()) r27: proper(zeros()) -> ok(zeros()) r28: proper(|0|()) -> ok(|0|()) r29: proper(head(X)) -> head(proper(X)) r30: proper(tail(X)) -> tail(proper(X)) r31: incr(ok(X)) -> ok(incr(X)) r32: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r33: s(ok(X)) -> ok(s(X)) r34: adx(ok(X)) -> ok(adx(X)) r35: head(ok(X)) -> ok(head(X)) r36: tail(ok(X)) -> ok(tail(X)) r37: top(mark(X)) -> top(proper(X)) r38: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: head#_A(x1) = x1 + 1 mark_A(x1) = x1 ok_A(x1) = x1 precedence: head# = mark = ok partial status: pi(head#) = [] pi(mark) = [] pi(ok) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: head#_A(x1) = x1 + 1 mark_A(x1) = x1 ok_A(x1) = x1 precedence: head# = mark = ok partial status: pi(head#) = [1] pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: tail#(mark(X)) -> tail#(X) p2: tail#(ok(X)) -> tail#(X) and R consists of: r1: active(incr(nil())) -> mark(nil()) r2: active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) r3: active(adx(nil())) -> mark(nil()) r4: active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) r5: active(nats()) -> mark(adx(zeros())) r6: active(zeros()) -> mark(cons(|0|(),zeros())) r7: active(head(cons(X,L))) -> mark(X) r8: active(tail(cons(X,L))) -> mark(L) r9: active(incr(X)) -> incr(active(X)) r10: active(cons(X1,X2)) -> cons(active(X1),X2) r11: active(s(X)) -> s(active(X)) r12: active(adx(X)) -> adx(active(X)) r13: active(head(X)) -> head(active(X)) r14: active(tail(X)) -> tail(active(X)) r15: incr(mark(X)) -> mark(incr(X)) r16: cons(mark(X1),X2) -> mark(cons(X1,X2)) r17: s(mark(X)) -> mark(s(X)) r18: adx(mark(X)) -> mark(adx(X)) r19: head(mark(X)) -> mark(head(X)) r20: tail(mark(X)) -> mark(tail(X)) r21: proper(incr(X)) -> incr(proper(X)) r22: proper(nil()) -> ok(nil()) r23: proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) r24: proper(s(X)) -> s(proper(X)) r25: proper(adx(X)) -> adx(proper(X)) r26: proper(nats()) -> ok(nats()) r27: proper(zeros()) -> ok(zeros()) r28: proper(|0|()) -> ok(|0|()) r29: proper(head(X)) -> head(proper(X)) r30: proper(tail(X)) -> tail(proper(X)) r31: incr(ok(X)) -> ok(incr(X)) r32: cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) r33: s(ok(X)) -> ok(s(X)) r34: adx(ok(X)) -> ok(adx(X)) r35: head(ok(X)) -> ok(head(X)) r36: tail(ok(X)) -> ok(tail(X)) r37: top(mark(X)) -> top(proper(X)) r38: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: tail#_A(x1) = max{6, x1 + 4} mark_A(x1) = max{4, x1 + 3} ok_A(x1) = max{2, x1 + 1} precedence: tail# = mark = ok partial status: pi(tail#) = [1] pi(mark) = [1] pi(ok) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: tail#_A(x1) = x1 + 1 mark_A(x1) = x1 ok_A(x1) = x1 precedence: tail# = mark = ok partial status: pi(tail#) = [1] pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.