YES We show the termination of the TRS R: a__zeros() -> cons(|0|(),zeros()) a__U11(tt()) -> tt() a__U21(tt()) -> tt() a__U31(tt()) -> tt() a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) a__U42(tt()) -> tt() a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) a__U52(tt()) -> tt() a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) a__U62(tt()) -> tt() a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) a__U72(tt(),L) -> s(a__length(mark(L))) a__U81(tt()) -> nil() a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) a__isNat(|0|()) -> tt() a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) a__isNat(s(V1)) -> a__U21(a__isNat(V1)) a__isNatIList(V) -> a__U31(a__isNatList(V)) a__isNatIList(zeros()) -> tt() a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) a__isNatList(nil()) -> tt() a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) a__length(nil()) -> |0|() a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) mark(zeros()) -> a__zeros() mark(U11(X)) -> a__U11(mark(X)) mark(U21(X)) -> a__U21(mark(X)) mark(U31(X)) -> a__U31(mark(X)) mark(U41(X1,X2)) -> a__U41(mark(X1),X2) mark(U42(X)) -> a__U42(mark(X)) mark(isNatIList(X)) -> a__isNatIList(X) mark(U51(X1,X2)) -> a__U51(mark(X1),X2) mark(U52(X)) -> a__U52(mark(X)) mark(isNatList(X)) -> a__isNatList(X) mark(U61(X1,X2)) -> a__U61(mark(X1),X2) mark(U62(X)) -> a__U62(mark(X)) mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) mark(U72(X1,X2)) -> a__U72(mark(X1),X2) mark(isNat(X)) -> a__isNat(X) mark(length(X)) -> a__length(mark(X)) mark(U81(X)) -> a__U81(mark(X)) mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(|0|()) -> |0|() mark(tt()) -> tt() mark(s(X)) -> s(mark(X)) mark(nil()) -> nil() a__zeros() -> zeros() a__U11(X) -> U11(X) a__U21(X) -> U21(X) a__U31(X) -> U31(X) a__U41(X1,X2) -> U41(X1,X2) a__U42(X) -> U42(X) a__isNatIList(X) -> isNatIList(X) a__U51(X1,X2) -> U51(X1,X2) a__U52(X) -> U52(X) a__isNatList(X) -> isNatList(X) a__U61(X1,X2) -> U61(X1,X2) a__U62(X) -> U62(X) a__U71(X1,X2,X3) -> U71(X1,X2,X3) a__U72(X1,X2) -> U72(X1,X2) a__isNat(X) -> isNat(X) a__length(X) -> length(X) a__U81(X) -> U81(X) a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) a__take(X1,X2) -> take(X1,X2) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U41#(tt(),V2) -> a__U42#(a__isNatIList(V2)) p2: a__U41#(tt(),V2) -> a__isNatIList#(V2) p3: a__U51#(tt(),V2) -> a__U52#(a__isNatList(V2)) p4: a__U51#(tt(),V2) -> a__isNatList#(V2) p5: a__U61#(tt(),V2) -> a__U62#(a__isNatIList(V2)) p6: a__U61#(tt(),V2) -> a__isNatIList#(V2) p7: a__U71#(tt(),L,N) -> a__U72#(a__isNat(N),L) p8: a__U71#(tt(),L,N) -> a__isNat#(N) p9: a__U72#(tt(),L) -> a__length#(mark(L)) p10: a__U72#(tt(),L) -> mark#(L) p11: a__U91#(tt(),IL,M,N) -> a__U92#(a__isNat(M),IL,M,N) p12: a__U91#(tt(),IL,M,N) -> a__isNat#(M) p13: a__U92#(tt(),IL,M,N) -> a__U93#(a__isNat(N),IL,M,N) p14: a__U92#(tt(),IL,M,N) -> a__isNat#(N) p15: a__U93#(tt(),IL,M,N) -> mark#(N) p16: a__isNat#(length(V1)) -> a__U11#(a__isNatList(V1)) p17: a__isNat#(length(V1)) -> a__isNatList#(V1) p18: a__isNat#(s(V1)) -> a__U21#(a__isNat(V1)) p19: a__isNat#(s(V1)) -> a__isNat#(V1) p20: a__isNatIList#(V) -> a__U31#(a__isNatList(V)) p21: a__isNatIList#(V) -> a__isNatList#(V) p22: a__isNatIList#(cons(V1,V2)) -> a__U41#(a__isNat(V1),V2) p23: a__isNatIList#(cons(V1,V2)) -> a__isNat#(V1) p24: a__isNatList#(cons(V1,V2)) -> a__U51#(a__isNat(V1),V2) p25: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p26: a__isNatList#(take(V1,V2)) -> a__U61#(a__isNat(V1),V2) p27: a__isNatList#(take(V1,V2)) -> a__isNat#(V1) p28: a__length#(cons(N,L)) -> a__U71#(a__isNatList(L),L,N) p29: a__length#(cons(N,L)) -> a__isNatList#(L) p30: a__take#(|0|(),IL) -> a__U81#(a__isNatIList(IL)) p31: a__take#(|0|(),IL) -> a__isNatIList#(IL) p32: a__take#(s(M),cons(N,IL)) -> a__U91#(a__isNatIList(IL),IL,M,N) p33: a__take#(s(M),cons(N,IL)) -> a__isNatIList#(IL) p34: mark#(zeros()) -> a__zeros#() p35: mark#(U11(X)) -> a__U11#(mark(X)) p36: mark#(U11(X)) -> mark#(X) p37: mark#(U21(X)) -> a__U21#(mark(X)) p38: mark#(U21(X)) -> mark#(X) p39: mark#(U31(X)) -> a__U31#(mark(X)) p40: mark#(U31(X)) -> mark#(X) p41: mark#(U41(X1,X2)) -> a__U41#(mark(X1),X2) p42: mark#(U41(X1,X2)) -> mark#(X1) p43: mark#(U42(X)) -> a__U42#(mark(X)) p44: mark#(U42(X)) -> mark#(X) p45: mark#(isNatIList(X)) -> a__isNatIList#(X) p46: mark#(U51(X1,X2)) -> a__U51#(mark(X1),X2) p47: mark#(U51(X1,X2)) -> mark#(X1) p48: mark#(U52(X)) -> a__U52#(mark(X)) p49: mark#(U52(X)) -> mark#(X) p50: mark#(isNatList(X)) -> a__isNatList#(X) p51: mark#(U61(X1,X2)) -> a__U61#(mark(X1),X2) p52: mark#(U61(X1,X2)) -> mark#(X1) p53: mark#(U62(X)) -> a__U62#(mark(X)) p54: mark#(U62(X)) -> mark#(X) p55: mark#(U71(X1,X2,X3)) -> a__U71#(mark(X1),X2,X3) p56: mark#(U71(X1,X2,X3)) -> mark#(X1) p57: mark#(U72(X1,X2)) -> a__U72#(mark(X1),X2) p58: mark#(U72(X1,X2)) -> mark#(X1) p59: mark#(isNat(X)) -> a__isNat#(X) p60: mark#(length(X)) -> a__length#(mark(X)) p61: mark#(length(X)) -> mark#(X) p62: mark#(U81(X)) -> a__U81#(mark(X)) p63: mark#(U81(X)) -> mark#(X) p64: mark#(U91(X1,X2,X3,X4)) -> a__U91#(mark(X1),X2,X3,X4) p65: mark#(U91(X1,X2,X3,X4)) -> mark#(X1) p66: mark#(U92(X1,X2,X3,X4)) -> a__U92#(mark(X1),X2,X3,X4) p67: mark#(U92(X1,X2,X3,X4)) -> mark#(X1) p68: mark#(U93(X1,X2,X3,X4)) -> a__U93#(mark(X1),X2,X3,X4) p69: mark#(U93(X1,X2,X3,X4)) -> mark#(X1) p70: mark#(take(X1,X2)) -> a__take#(mark(X1),mark(X2)) p71: mark#(take(X1,X2)) -> mark#(X1) p72: mark#(take(X1,X2)) -> mark#(X2) p73: mark#(cons(X1,X2)) -> mark#(X1) p74: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The estimated dependency graph contains the following SCCs: {p7, p9, p10, p11, p13, p15, p28, p32, p36, p38, p40, p42, p44, p47, p49, p52, p54, p55, p56, p57, p58, p60, p61, p63, p64, p65, p66, p67, p68, p69, p70, p71, p72, p73, p74} {p2, p4, p6, p17, p19, p21, p22, p23, p24, p25, p26, p27} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U93#(tt(),IL,M,N) -> mark#(N) p2: mark#(s(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(take(X1,X2)) -> mark#(X2) p5: mark#(take(X1,X2)) -> mark#(X1) p6: mark#(take(X1,X2)) -> a__take#(mark(X1),mark(X2)) p7: a__take#(s(M),cons(N,IL)) -> a__U91#(a__isNatIList(IL),IL,M,N) p8: a__U91#(tt(),IL,M,N) -> a__U92#(a__isNat(M),IL,M,N) p9: a__U92#(tt(),IL,M,N) -> a__U93#(a__isNat(N),IL,M,N) p10: mark#(U93(X1,X2,X3,X4)) -> mark#(X1) p11: mark#(U93(X1,X2,X3,X4)) -> a__U93#(mark(X1),X2,X3,X4) p12: mark#(U92(X1,X2,X3,X4)) -> mark#(X1) p13: mark#(U92(X1,X2,X3,X4)) -> a__U92#(mark(X1),X2,X3,X4) p14: mark#(U91(X1,X2,X3,X4)) -> mark#(X1) p15: mark#(U91(X1,X2,X3,X4)) -> a__U91#(mark(X1),X2,X3,X4) p16: mark#(U81(X)) -> mark#(X) p17: mark#(length(X)) -> mark#(X) p18: mark#(length(X)) -> a__length#(mark(X)) p19: a__length#(cons(N,L)) -> a__U71#(a__isNatList(L),L,N) p20: a__U71#(tt(),L,N) -> a__U72#(a__isNat(N),L) p21: a__U72#(tt(),L) -> mark#(L) p22: mark#(U72(X1,X2)) -> mark#(X1) p23: mark#(U72(X1,X2)) -> a__U72#(mark(X1),X2) p24: a__U72#(tt(),L) -> a__length#(mark(L)) p25: mark#(U71(X1,X2,X3)) -> mark#(X1) p26: mark#(U71(X1,X2,X3)) -> a__U71#(mark(X1),X2,X3) p27: mark#(U62(X)) -> mark#(X) p28: mark#(U61(X1,X2)) -> mark#(X1) p29: mark#(U52(X)) -> mark#(X) p30: mark#(U51(X1,X2)) -> mark#(X1) p31: mark#(U42(X)) -> mark#(X) p32: mark#(U41(X1,X2)) -> mark#(X1) p33: mark#(U31(X)) -> mark#(X) p34: mark#(U21(X)) -> mark#(X) p35: mark#(U11(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a__U93#_A(x1,x2,x3,x4) = max{x1 - 2, x3 + 3, x4 + 88} tt_A = 157 mark#_A(x1) = x1 + 87 s_A(x1) = max{246, x1} cons_A(x1,x2) = max{400, x1 + 358, x2} take_A(x1,x2) = max{472, x1 + 320, x2 + 281} a__take#_A(x1,x2) = max{473, x1 + 281, x2 + 205} mark_A(x1) = max{40, x1} a__U91#_A(x1,x2,x3,x4) = max{x1 + 87, x2 + 5, x3 + 4, x4 + 360} a__isNatIList_A(x1) = max{474, x1 + 117} a__U92#_A(x1,x2,x3,x4) = max{x3 + 4, x4 + 359} a__isNat_A(x1) = x1 + 9 U93_A(x1,x2,x3,x4) = max{473, x1 + 242, x2 + 281, x3 + 320, x4 + 358} U92_A(x1,x2,x3,x4) = max{473, x1 + 279, x2 + 281, x3 + 320, x4 + 358} U91_A(x1,x2,x3,x4) = max{681, x1 + 87, x2 + 281, x3 + 320, x4 + 474} U81_A(x1) = max{245, x1 + 88} length_A(x1) = max{530, x1 + 71} a__length#_A(x1) = x1 + 116 a__U71#_A(x1,x2,x3) = max{x1 + 1, x2 + 116, x3 + 183} a__isNatList_A(x1) = max{472, x1 + 11} a__U72#_A(x1,x2) = max{157, x1 - 1, x2 + 116} U72_A(x1,x2) = max{530, x1 + 88, x2 + 71} U71_A(x1,x2,x3) = max{530, x1 + 58, x2 + 71, x3 + 97} U62_A(x1) = max{158, x1 + 3} U61_A(x1,x2) = max{482, x1 + 273, x2 + 159} U52_A(x1) = max{161, x1} U51_A(x1,x2) = max{472, x1 + 3, x2 + 11} U42_A(x1) = max{41, x1} U41_A(x1,x2) = max{474, x1, x2 + 117} U31_A(x1) = max{118, x1 + 1} U21_A(x1) = x1 U11_A(x1) = max{158, x1 + 59} a__zeros_A = 602 |0|_A = 243 zeros_A = 602 a__U11_A(x1) = max{158, x1 + 59} a__U21_A(x1) = max{8, x1} a__U31_A(x1) = max{118, x1 + 1} a__U41_A(x1,x2) = max{474, x1, x2 + 117} a__U42_A(x1) = max{41, x1} a__U51_A(x1,x2) = max{472, x1 + 3, x2 + 11} a__U52_A(x1) = max{161, x1} a__U61_A(x1,x2) = max{482, x1 + 273, x2 + 159} a__U62_A(x1) = max{158, x1 + 3} a__U71_A(x1,x2,x3) = max{530, x1 + 58, x2 + 71, x3 + 97} a__U72_A(x1,x2) = max{530, x1 + 88, x2 + 71} a__length_A(x1) = max{530, x1 + 71} a__U81_A(x1) = max{245, x1 + 88} nil_A = 244 a__U91_A(x1,x2,x3,x4) = max{681, x1 + 87, x2 + 281, x3 + 320, x4 + 474} a__U92_A(x1,x2,x3,x4) = max{473, x1 + 279, x2 + 281, x3 + 320, x4 + 358} a__U93_A(x1,x2,x3,x4) = max{473, x1 + 242, x2 + 281, x3 + 320, x4 + 358} a__take_A(x1,x2) = max{472, x1 + 320, x2 + 281} isNatIList_A(x1) = max{474, x1 + 117} isNatList_A(x1) = max{472, x1 + 11} isNat_A(x1) = x1 + 9 precedence: a__U93# = tt = mark# = s = cons = take = a__take# = mark = a__U91# = a__isNatIList = a__U92# = a__isNat = U93 = U92 = U91 = U81 = length = a__length# = a__U71# = a__isNatList = a__U72# = U72 = U71 = U62 = U61 = U52 = U51 = U42 = U41 = U31 = U21 = U11 = a__zeros = |0| = zeros = a__U11 = a__U21 = a__U31 = a__U41 = a__U42 = a__U51 = a__U52 = a__U61 = a__U62 = a__U71 = a__U72 = a__length = a__U81 = nil = a__U91 = a__U92 = a__U93 = a__take = isNatIList = isNatList = isNat partial status: pi(a__U93#) = [] pi(tt) = [] pi(mark#) = [] pi(s) = [] pi(cons) = [] pi(take) = [] pi(a__take#) = [] pi(mark) = [] pi(a__U91#) = [] pi(a__isNatIList) = [] pi(a__U92#) = [] pi(a__isNat) = [] pi(U93) = [] pi(U92) = [] pi(U91) = [] pi(U81) = [] pi(length) = [] pi(a__length#) = [] pi(a__U71#) = [] pi(a__isNatList) = [] pi(a__U72#) = [] pi(U72) = [] pi(U71) = [] pi(U62) = [] pi(U61) = [] pi(U52) = [] pi(U51) = [] pi(U42) = [] pi(U41) = [] pi(U31) = [] pi(U21) = [] pi(U11) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(a__U21) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__U51) = [] pi(a__U52) = [] pi(a__U61) = [] pi(a__U62) = [] pi(a__U71) = [] pi(a__U72) = [] pi(a__length) = [] pi(a__U81) = [] pi(nil) = [] pi(a__U91) = [] pi(a__U92) = [] pi(a__U93) = [] pi(a__take) = [] pi(isNatIList) = [] pi(isNatList) = [] pi(isNat) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: a__U93#_A(x1,x2,x3,x4) = 74 tt_A = 95 mark#_A(x1) = 74 s_A(x1) = 73 cons_A(x1,x2) = 102 take_A(x1,x2) = 88 a__take#_A(x1,x2) = 73 mark_A(x1) = 136 a__U91#_A(x1,x2,x3,x4) = 56 a__isNatIList_A(x1) = 136 a__U92#_A(x1,x2,x3,x4) = 55 a__isNat_A(x1) = 133 U93_A(x1,x2,x3,x4) = 91 U92_A(x1,x2,x3,x4) = 74 U91_A(x1,x2,x3,x4) = 19 U81_A(x1) = 126 length_A(x1) = 75 a__length#_A(x1) = 137 a__U71#_A(x1,x2,x3) = 137 a__isNatList_A(x1) = 136 a__U72#_A(x1,x2) = 137 U72_A(x1,x2) = 126 U71_A(x1,x2,x3) = 75 U62_A(x1) = 73 U61_A(x1,x2) = 73 U52_A(x1) = 135 U51_A(x1,x2) = 136 U42_A(x1) = 1 U41_A(x1,x2) = 3 U31_A(x1) = 127 U21_A(x1) = 64 U11_A(x1) = 1 a__zeros_A = 103 |0|_A = 0 zeros_A = 94 a__U11_A(x1) = 12 a__U21_A(x1) = 96 a__U31_A(x1) = 127 a__U41_A(x1,x2) = 101 a__U42_A(x1) = 100 a__U51_A(x1,x2) = 136 a__U52_A(x1) = 135 a__U61_A(x1,x2) = 95 a__U62_A(x1) = 94 a__U71_A(x1,x2,x3) = 134 a__U72_A(x1,x2) = 126 a__length_A(x1) = 135 a__U81_A(x1) = 136 nil_A = 94 a__U91_A(x1,x2,x3,x4) = 136 a__U92_A(x1,x2,x3,x4) = 136 a__U93_A(x1,x2,x3,x4) = 102 a__take_A(x1,x2) = 136 isNatIList_A(x1) = 136 isNatList_A(x1) = 126 isNat_A(x1) = 133 precedence: U41 = zeros > U61 > U93 > a__U93# = mark# = a__U92# > a__take# = a__U91# > mark > s > a__U62 > a__isNatList > a__U51 > U71 > isNatList > U81 = a__U81 = a__take > U91 = a__U91 > a__U93 > a__U92 > U92 > U62 > a__U61 > nil > a__length# = a__U71# = a__U72# = a__U11 > a__isNat > a__U41 > a__isNatIList > cons = a__U31 > a__U21 > U42 > a__U42 > tt > a__zeros = isNatIList > a__U52 > U52 > |0| > a__length > a__U72 > a__U71 > length > U72 > take = U51 = U31 = U21 > U11 > isNat partial status: pi(a__U93#) = [] pi(tt) = [] pi(mark#) = [] pi(s) = [] pi(cons) = [] pi(take) = [] pi(a__take#) = [] pi(mark) = [] pi(a__U91#) = [] pi(a__isNatIList) = [] pi(a__U92#) = [] pi(a__isNat) = [] pi(U93) = [] pi(U92) = [] pi(U91) = [] pi(U81) = [] pi(length) = [] pi(a__length#) = [] pi(a__U71#) = [] pi(a__isNatList) = [] pi(a__U72#) = [] pi(U72) = [] pi(U71) = [] pi(U62) = [] pi(U61) = [] pi(U52) = [] pi(U51) = [] pi(U42) = [] pi(U41) = [] pi(U31) = [] pi(U21) = [] pi(U11) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(a__U21) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__U51) = [] pi(a__U52) = [] pi(a__U61) = [] pi(a__U62) = [] pi(a__U71) = [] pi(a__U72) = [] pi(a__length) = [] pi(a__U81) = [] pi(nil) = [] pi(a__U91) = [] pi(a__U92) = [] pi(a__U93) = [] pi(a__take) = [] pi(isNatIList) = [] pi(isNatList) = [] pi(isNat) = [] The next rules are strictly ordered: p9, p18, p21, p23, p26 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__U93#(tt(),IL,M,N) -> mark#(N) p2: mark#(s(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(take(X1,X2)) -> mark#(X2) p5: mark#(take(X1,X2)) -> mark#(X1) p6: mark#(take(X1,X2)) -> a__take#(mark(X1),mark(X2)) p7: a__take#(s(M),cons(N,IL)) -> a__U91#(a__isNatIList(IL),IL,M,N) p8: a__U91#(tt(),IL,M,N) -> a__U92#(a__isNat(M),IL,M,N) p9: mark#(U93(X1,X2,X3,X4)) -> mark#(X1) p10: mark#(U93(X1,X2,X3,X4)) -> a__U93#(mark(X1),X2,X3,X4) p11: mark#(U92(X1,X2,X3,X4)) -> mark#(X1) p12: mark#(U92(X1,X2,X3,X4)) -> a__U92#(mark(X1),X2,X3,X4) p13: mark#(U91(X1,X2,X3,X4)) -> mark#(X1) p14: mark#(U91(X1,X2,X3,X4)) -> a__U91#(mark(X1),X2,X3,X4) p15: mark#(U81(X)) -> mark#(X) p16: mark#(length(X)) -> mark#(X) p17: a__length#(cons(N,L)) -> a__U71#(a__isNatList(L),L,N) p18: a__U71#(tt(),L,N) -> a__U72#(a__isNat(N),L) p19: mark#(U72(X1,X2)) -> mark#(X1) p20: a__U72#(tt(),L) -> a__length#(mark(L)) p21: mark#(U71(X1,X2,X3)) -> mark#(X1) p22: mark#(U62(X)) -> mark#(X) p23: mark#(U61(X1,X2)) -> mark#(X1) p24: mark#(U52(X)) -> mark#(X) p25: mark#(U51(X1,X2)) -> mark#(X1) p26: mark#(U42(X)) -> mark#(X) p27: mark#(U41(X1,X2)) -> mark#(X1) p28: mark#(U31(X)) -> mark#(X) p29: mark#(U21(X)) -> mark#(X) p30: mark#(U11(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p9, p10, p11, p13, p15, p16, p19, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30} {p17, p18, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U93#(tt(),IL,M,N) -> mark#(N) p2: mark#(U11(X)) -> mark#(X) p3: mark#(U21(X)) -> mark#(X) p4: mark#(U31(X)) -> mark#(X) p5: mark#(U41(X1,X2)) -> mark#(X1) p6: mark#(U42(X)) -> mark#(X) p7: mark#(U51(X1,X2)) -> mark#(X1) p8: mark#(U52(X)) -> mark#(X) p9: mark#(U61(X1,X2)) -> mark#(X1) p10: mark#(U62(X)) -> mark#(X) p11: mark#(U71(X1,X2,X3)) -> mark#(X1) p12: mark#(U72(X1,X2)) -> mark#(X1) p13: mark#(length(X)) -> mark#(X) p14: mark#(U81(X)) -> mark#(X) p15: mark#(U91(X1,X2,X3,X4)) -> mark#(X1) p16: mark#(U92(X1,X2,X3,X4)) -> mark#(X1) p17: mark#(U93(X1,X2,X3,X4)) -> a__U93#(mark(X1),X2,X3,X4) p18: mark#(U93(X1,X2,X3,X4)) -> mark#(X1) p19: mark#(take(X1,X2)) -> mark#(X1) p20: mark#(take(X1,X2)) -> mark#(X2) p21: mark#(cons(X1,X2)) -> mark#(X1) p22: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a__U93#_A(x1,x2,x3,x4) = max{x1 - 77, x2, x4 + 66} tt_A = 0 mark#_A(x1) = max{65, x1 - 53} U11_A(x1) = max{147, x1 + 120} U21_A(x1) = max{24, x1} U31_A(x1) = max{58, x1 + 24} U41_A(x1,x2) = max{77, x1 + 54, x2 - 5} U42_A(x1) = max{53, x1} U51_A(x1,x2) = max{25, x1 + 1, x2 - 30} U52_A(x1) = max{1, x1} U61_A(x1,x2) = max{x1 + 41, x2 + 64} U62_A(x1) = max{42, x1 + 6} U71_A(x1,x2,x3) = max{x1 + 119, x2 + 89, x3 + 148} U72_A(x1,x2) = max{147, x1 + 124, x2 + 89} length_A(x1) = max{146, x1 + 89} U81_A(x1) = max{66, x1} U91_A(x1,x2,x3,x4) = max{x1 + 117, x2 + 116, x3 + 75, x4 + 176} U92_A(x1,x2,x3,x4) = max{x1 + 64, x2 + 116, x3 + 75, x4 + 176} U93_A(x1,x2,x3,x4) = max{176, x1, x2 + 116, x3 + 75, x4 + 142} mark_A(x1) = max{23, x1} take_A(x1,x2) = max{176, x1 + 75, x2 + 116} cons_A(x1,x2) = max{143, x1 + 60, x2} s_A(x1) = max{125, x1} a__zeros_A = 144 |0|_A = 22 zeros_A = 144 a__U11_A(x1) = max{147, x1 + 120} a__U21_A(x1) = max{24, x1} a__U31_A(x1) = max{58, x1 + 24} a__U41_A(x1,x2) = max{77, x1 + 54, x2 - 5} a__U42_A(x1) = max{53, x1} a__isNatIList_A(x1) = max{58, x1 - 5} a__U51_A(x1,x2) = max{25, x1 + 1, x2 - 30} a__U52_A(x1) = max{23, x1} a__isNatList_A(x1) = max{25, x1 - 30} a__U61_A(x1,x2) = max{x1 + 41, x2 + 64} a__U62_A(x1) = max{42, x1 + 6} a__U71_A(x1,x2,x3) = max{x1 + 119, x2 + 89, x3 + 148} a__U72_A(x1,x2) = max{147, x1 + 124, x2 + 89} a__isNat_A(x1) = max{3, x1 + 1} a__length_A(x1) = max{146, x1 + 89} a__U81_A(x1) = max{66, x1} nil_A = 31 a__U91_A(x1,x2,x3,x4) = max{x1 + 117, x2 + 116, x3 + 75, x4 + 176} a__U92_A(x1,x2,x3,x4) = max{x1 + 64, x2 + 116, x3 + 75, x4 + 176} a__U93_A(x1,x2,x3,x4) = max{176, x1, x2 + 116, x3 + 75, x4 + 142} a__take_A(x1,x2) = max{176, x1 + 75, x2 + 116} isNatIList_A(x1) = max{58, x1 - 5} isNatList_A(x1) = max{25, x1 - 30} isNat_A(x1) = max{2, x1 + 1} precedence: mark > a__U81 > a__take > a__zeros > a__U91 > a__U92 > a__U93 > U92 = a__isNat > tt > U93 > cons > a__isNatIList > a__U41 > a__length > a__U71 > U81 = a__U72 > U31 = a__U31 > a__U21 > a__isNatList > isNat > U41 > a__U51 > s > take > zeros > U61 = a__U61 > a__U62 > nil > a__U42 > U21 > mark# = isNatList > length > isNatIList > a__U11 > U72 > U62 > |0| > U11 = a__U52 > a__U93# > U52 = U71 = U91 > U51 > U42 partial status: pi(a__U93#) = [] pi(tt) = [] pi(mark#) = [] pi(U11) = [1] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(U42) = [] pi(U51) = [1] pi(U52) = [] pi(U61) = [1] pi(U62) = [] pi(U71) = [1, 2] pi(U72) = [2] pi(length) = [] pi(U81) = [] pi(U91) = [1] pi(U92) = [] pi(U93) = [] pi(mark) = [] pi(take) = [] pi(cons) = [] pi(s) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [1] pi(a__U21) = [] pi(a__U31) = [] pi(a__U41) = [1] pi(a__U42) = [] pi(a__isNatIList) = [] pi(a__U51) = [] pi(a__U52) = [] pi(a__isNatList) = [] pi(a__U61) = [1, 2] pi(a__U62) = [] pi(a__U71) = [1, 2] pi(a__U72) = [] pi(a__isNat) = [] pi(a__length) = [] pi(a__U81) = [] pi(nil) = [] pi(a__U91) = [1, 4] pi(a__U92) = [] pi(a__U93) = [] pi(a__take) = [2] pi(isNatIList) = [] pi(isNatList) = [] pi(isNat) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: a__U93#_A(x1,x2,x3,x4) = 170 tt_A = 155 mark#_A(x1) = 170 U11_A(x1) = 1 U21_A(x1) = 6 U31_A(x1) = 33 U41_A(x1,x2) = 74 U42_A(x1) = 74 U51_A(x1,x2) = 0 U52_A(x1) = 1 U61_A(x1,x2) = 166 U62_A(x1) = 3 U71_A(x1,x2,x3) = max{x1 + 165, x2 + 242} U72_A(x1,x2) = 7 length_A(x1) = 153 U81_A(x1) = 78 U91_A(x1,x2,x3,x4) = 156 U92_A(x1,x2,x3,x4) = 155 U93_A(x1,x2,x3,x4) = 147 mark_A(x1) = 164 take_A(x1,x2) = 81 cons_A(x1,x2) = 121 s_A(x1) = 0 a__zeros_A = 122 |0|_A = 5 zeros_A = 88 a__U11_A(x1) = 154 a__U21_A(x1) = 7 a__U31_A(x1) = 75 a__U41_A(x1,x2) = max{152, x1} a__U42_A(x1) = 153 a__isNatIList_A(x1) = 120 a__U51_A(x1,x2) = 164 a__U52_A(x1) = 164 a__isNatList_A(x1) = 164 a__U61_A(x1,x2) = max{x1 + 167, x2 + 167} a__U62_A(x1) = 154 a__U71_A(x1,x2,x3) = max{x1 + 166, x2 + 243} a__U72_A(x1,x2) = 163 a__isNat_A(x1) = 154 a__length_A(x1) = 166 a__U81_A(x1) = 78 nil_A = 0 a__U91_A(x1,x2,x3,x4) = 168 a__U92_A(x1,x2,x3,x4) = 155 a__U93_A(x1,x2,x3,x4) = 148 a__take_A(x1,x2) = max{165, x2 + 82} isNatIList_A(x1) = 119 isNatList_A(x1) = 74 isNat_A(x1) = 66 precedence: mark > tt > U52 > zeros > a__isNatIList > a__isNatList > a__length > a__U42 > a__U41 > a__U51 = a__U52 = a__U61 > a__U31 = a__isNat > isNatList > a__U81 > a__take > a__U91 > a__U62 > U11 = U71 = a__U71 = a__U92 > U61 > a__U93 > length = U92 > nil > |0| > a__zeros > cons > U93 > mark# > s > isNat > U42 = U91 = a__U72 > a__U93# > U41 > a__U21 > U72 > U31 > U51 = U62 > U81 > a__U11 > U21 = take = isNatIList partial status: pi(a__U93#) = [] pi(tt) = [] pi(mark#) = [] pi(U11) = [] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(U42) = [] pi(U51) = [] pi(U52) = [] pi(U61) = [] pi(U62) = [] pi(U71) = [] pi(U72) = [] pi(length) = [] pi(U81) = [] pi(U91) = [] pi(U92) = [] pi(U93) = [] pi(mark) = [] pi(take) = [] pi(cons) = [] pi(s) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(a__U21) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__isNatIList) = [] pi(a__U51) = [] pi(a__U52) = [] pi(a__isNatList) = [] pi(a__U61) = [] pi(a__U62) = [] pi(a__U71) = [2] pi(a__U72) = [] pi(a__isNat) = [] pi(a__length) = [] pi(a__U81) = [] pi(nil) = [] pi(a__U91) = [] pi(a__U92) = [] pi(a__U93) = [] pi(a__take) = [] pi(isNatIList) = [] pi(isNatList) = [] pi(isNat) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X)) -> mark#(X) p2: mark#(U21(X)) -> mark#(X) p3: mark#(U31(X)) -> mark#(X) p4: mark#(U41(X1,X2)) -> mark#(X1) p5: mark#(U42(X)) -> mark#(X) p6: mark#(U51(X1,X2)) -> mark#(X1) p7: mark#(U52(X)) -> mark#(X) p8: mark#(U61(X1,X2)) -> mark#(X1) p9: mark#(U62(X)) -> mark#(X) p10: mark#(U71(X1,X2,X3)) -> mark#(X1) p11: mark#(U72(X1,X2)) -> mark#(X1) p12: mark#(length(X)) -> mark#(X) p13: mark#(U81(X)) -> mark#(X) p14: mark#(U91(X1,X2,X3,X4)) -> mark#(X1) p15: mark#(U92(X1,X2,X3,X4)) -> mark#(X1) p16: mark#(U93(X1,X2,X3,X4)) -> a__U93#(mark(X1),X2,X3,X4) p17: mark#(U93(X1,X2,X3,X4)) -> mark#(X1) p18: mark#(take(X1,X2)) -> mark#(X1) p19: mark#(take(X1,X2)) -> mark#(X2) p20: mark#(cons(X1,X2)) -> mark#(X1) p21: mark#(s(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p17, p18, p19, p20, p21} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X)) -> mark#(X) p2: mark#(s(X)) -> mark#(X) p3: mark#(cons(X1,X2)) -> mark#(X1) p4: mark#(take(X1,X2)) -> mark#(X2) p5: mark#(take(X1,X2)) -> mark#(X1) p6: mark#(U93(X1,X2,X3,X4)) -> mark#(X1) p7: mark#(U92(X1,X2,X3,X4)) -> mark#(X1) p8: mark#(U91(X1,X2,X3,X4)) -> mark#(X1) p9: mark#(U81(X)) -> mark#(X) p10: mark#(length(X)) -> mark#(X) p11: mark#(U72(X1,X2)) -> mark#(X1) p12: mark#(U71(X1,X2,X3)) -> mark#(X1) p13: mark#(U62(X)) -> mark#(X) p14: mark#(U61(X1,X2)) -> mark#(X1) p15: mark#(U52(X)) -> mark#(X) p16: mark#(U51(X1,X2)) -> mark#(X1) p17: mark#(U42(X)) -> mark#(X) p18: mark#(U41(X1,X2)) -> mark#(X1) p19: mark#(U31(X)) -> mark#(X) p20: mark#(U21(X)) -> mark#(X) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{6, x1 + 4} U11_A(x1) = max{5, x1 + 4} s_A(x1) = max{4, x1 + 3} cons_A(x1,x2) = max{x1, x2} take_A(x1,x2) = max{x1, x2} U93_A(x1,x2,x3,x4) = max{x1, x4} U92_A(x1,x2,x3,x4) = max{x1, x4} U91_A(x1,x2,x3,x4) = max{x1, x4} U81_A(x1) = max{1, x1} length_A(x1) = max{1, x1} U72_A(x1,x2) = max{x1, x2} U71_A(x1,x2,x3) = max{x1, x3} U62_A(x1) = max{1, x1} U61_A(x1,x2) = max{x1, x2} U52_A(x1) = max{1, x1} U51_A(x1,x2) = max{x1, x2} U42_A(x1) = max{1, x1} U41_A(x1,x2) = max{x1, x2} U31_A(x1) = max{1, x1} U21_A(x1) = max{1, x1} precedence: U93 > mark# = U11 = s = cons = take = U92 = U91 = U81 = length = U72 = U71 = U62 = U61 = U52 = U51 = U42 = U41 = U31 = U21 partial status: pi(mark#) = [1] pi(U11) = [1] pi(s) = [1] pi(cons) = [1, 2] pi(take) = [1, 2] pi(U93) = [1, 4] pi(U92) = [1, 4] pi(U91) = [1, 4] pi(U81) = [1] pi(length) = [1] pi(U72) = [1, 2] pi(U71) = [1, 3] pi(U62) = [1] pi(U61) = [1, 2] pi(U52) = [1] pi(U51) = [1, 2] pi(U42) = [1] pi(U41) = [1, 2] pi(U31) = [1] pi(U21) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 2 U11_A(x1) = x1 s_A(x1) = x1 cons_A(x1,x2) = max{x1, x2} take_A(x1,x2) = max{x1, x2} U93_A(x1,x2,x3,x4) = max{x1, x4} U92_A(x1,x2,x3,x4) = max{x1, x4} U91_A(x1,x2,x3,x4) = max{x1, x4} U81_A(x1) = x1 length_A(x1) = x1 U72_A(x1,x2) = max{x1, x2} U71_A(x1,x2,x3) = max{x1, x3} U62_A(x1) = x1 U61_A(x1,x2) = max{x1, x2} U52_A(x1) = x1 U51_A(x1,x2) = max{x1, x2} U42_A(x1) = x1 U41_A(x1,x2) = max{x1, x2} U31_A(x1) = x1 U21_A(x1) = x1 precedence: mark# = U11 = s = cons = take = U93 = U92 = U91 = U81 = length = U72 = U71 = U62 = U61 = U52 = U51 = U42 = U41 = U31 = U21 partial status: pi(mark#) = [1] pi(U11) = [1] pi(s) = [1] pi(cons) = [1, 2] pi(take) = [1, 2] pi(U93) = [1, 4] pi(U92) = [1, 4] pi(U91) = [1, 4] pi(U81) = [1] pi(length) = [1] pi(U72) = [1, 2] pi(U71) = [1, 3] pi(U62) = [1] pi(U61) = [1, 2] pi(U52) = [1] pi(U51) = [1, 2] pi(U42) = [1] pi(U41) = [1, 2] pi(U31) = [1] pi(U21) = [1] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__length#(cons(N,L)) -> a__U71#(a__isNatList(L),L,N) p2: a__U71#(tt(),L,N) -> a__U72#(a__isNat(N),L) p3: a__U72#(tt(),L) -> a__length#(mark(L)) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a__length#_A(x1) = x1 + 6 cons_A(x1,x2) = max{x1 - 1, x2 + 7} a__U71#_A(x1,x2,x3) = max{x1 - 34, x2 + 7, x3 - 2} a__isNatList_A(x1) = x1 + 46 tt_A = 84 a__U72#_A(x1,x2) = max{21, x1 - 80, x2 + 6} a__isNat_A(x1) = x1 + 73 mark_A(x1) = max{14, x1} a__zeros_A = 13 |0|_A = 12 zeros_A = 0 a__U11_A(x1) = max{73, x1 + 15} a__U21_A(x1) = max{85, x1} a__U31_A(x1) = 85 a__U41_A(x1,x2) = 86 a__U42_A(x1) = 85 a__isNatIList_A(x1) = 86 a__U51_A(x1,x2) = max{x1 - 84, x2 + 46} a__U52_A(x1) = max{13, x1} a__U61_A(x1,x2) = max{87, x1 + 15, x2 + 30} a__U62_A(x1) = 87 a__U71_A(x1,x2,x3) = max{x1 - 40, x2 + 7, x3 - 2} a__U72_A(x1,x2) = max{44, x1 - 76, x2 + 7} s_A(x1) = max{44, x1 + 7} a__length_A(x1) = x1 a__U81_A(x1) = max{58, x1 - 85} nil_A = 57 a__U91_A(x1,x2,x3,x4) = max{59, x1 - 16, x2 + 7, x3 + 50, x4 - 1} a__U92_A(x1,x2,x3,x4) = max{67, x1 - 24, x2 + 7, x3 + 50, x4 - 1} a__U93_A(x1,x2,x3,x4) = max{66, x2 + 7, x3 + 50, x4 - 1} take_A(x1,x2) = max{58, x1 + 43, x2} a__take_A(x1,x2) = max{58, x1 + 43, x2} U11_A(x1) = max{73, x1 + 15} U21_A(x1) = max{85, x1} U31_A(x1) = 85 U41_A(x1,x2) = 86 U42_A(x1) = 85 isNatIList_A(x1) = 86 U51_A(x1,x2) = max{x1 - 84, x2 + 46} U52_A(x1) = max{13, x1} U61_A(x1,x2) = max{87, x1 + 15, x2 + 30} U62_A(x1) = 87 U71_A(x1,x2,x3) = max{x1 - 40, x2 + 7, x3 - 2} U72_A(x1,x2) = max{44, x1 - 76, x2 + 7} length_A(x1) = x1 U81_A(x1) = max{58, x1 - 85} U91_A(x1,x2,x3,x4) = max{59, x1 - 16, x2 + 7, x3 + 50, x4 - 1} U92_A(x1,x2,x3,x4) = max{67, x1 - 24, x2 + 7, x3 + 50, x4 - 1} U93_A(x1,x2,x3,x4) = max{66, x2 + 7, x3 + 50, x4 - 1} isNatList_A(x1) = x1 + 46 isNat_A(x1) = x1 + 73 precedence: mark = a__U31 = U31 > a__length > |0| = a__isNatIList = a__take > a__U91 > a__isNatList = a__U41 = a__U42 = a__U51 = a__U52 = a__U61 = a__U71 = a__U72 = a__U81 = take = U42 = U51 = U61 = U71 = U72 = U91 > isNatList > a__zeros = a__U92 = a__U93 = U92 > cons > a__U71# > a__U72# > length = U93 > s > a__length# > tt = a__isNat = zeros = a__U11 = a__U21 = a__U62 = nil = U11 = U21 = U41 = isNatIList = U52 = U62 = U81 = isNat partial status: pi(a__length#) = [1] pi(cons) = [2] pi(a__U71#) = [] pi(a__isNatList) = [1] pi(tt) = [] pi(a__U72#) = [] pi(a__isNat) = [1] pi(mark) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(a__U21) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__isNatIList) = [] pi(a__U51) = [2] pi(a__U52) = [] pi(a__U61) = [] pi(a__U62) = [] pi(a__U71) = [] pi(a__U72) = [] pi(s) = [1] pi(a__length) = [] pi(a__U81) = [] pi(nil) = [] pi(a__U91) = [] pi(a__U92) = [3] pi(a__U93) = [] pi(take) = [] pi(a__take) = [1] pi(U11) = [] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(U42) = [] pi(isNatIList) = [] pi(U51) = [] pi(U52) = [] pi(U61) = [] pi(U62) = [] pi(U71) = [] pi(U72) = [] pi(length) = [] pi(U81) = [] pi(U91) = [] pi(U92) = [] pi(U93) = [] pi(isNatList) = [1] pi(isNat) = [] 2. weighted path order base order: max/plus interpretations on natural numbers: a__length#_A(x1) = max{15, x1 + 2} cons_A(x1,x2) = x2 + 51 a__U71#_A(x1,x2,x3) = 32 a__isNatList_A(x1) = 16 tt_A = 1 a__U72#_A(x1,x2) = 20 a__isNat_A(x1) = 7 mark_A(x1) = 17 a__zeros_A = 4 |0|_A = 0 zeros_A = 0 a__U11_A(x1) = 7 a__U21_A(x1) = 17 a__U31_A(x1) = 6 a__U41_A(x1,x2) = 6 a__U42_A(x1) = 17 a__isNatIList_A(x1) = 6 a__U51_A(x1,x2) = 16 a__U52_A(x1) = 15 a__U61_A(x1,x2) = 16 a__U62_A(x1) = 16 a__U71_A(x1,x2,x3) = 17 a__U72_A(x1,x2) = 17 s_A(x1) = 17 a__length_A(x1) = 17 a__U81_A(x1) = 17 nil_A = 18 a__U91_A(x1,x2,x3,x4) = 17 a__U92_A(x1,x2,x3,x4) = x3 + 70 a__U93_A(x1,x2,x3,x4) = 64 take_A(x1,x2) = 13 a__take_A(x1,x2) = max{17, x1} U11_A(x1) = 7 U21_A(x1) = 16 U31_A(x1) = 6 U41_A(x1,x2) = 5 U42_A(x1) = 16 isNatIList_A(x1) = 5 U51_A(x1,x2) = 15 U52_A(x1) = 14 U61_A(x1,x2) = 15 U62_A(x1) = 15 U71_A(x1,x2,x3) = 16 U72_A(x1,x2) = 17 length_A(x1) = 6 U81_A(x1) = 18 U91_A(x1,x2,x3,x4) = 17 U92_A(x1,x2,x3,x4) = 61 U93_A(x1,x2,x3,x4) = 61 isNatList_A(x1) = max{19, x1 + 17} isNat_A(x1) = 7 precedence: a__zeros > a__isNatList = tt > take > a__length# = a__U71# = a__U41 = a__isNatIList = a__U51 = a__U52 = isNatIList = U52 > a__U91 > a__U72# = a__U93 > a__U61 = a__U62 = a__U92 = U51 = U61 > U92 > mark = a__U31 = a__U81 = U81 > a__isNat > isNat > a__U42 = a__take > U41 = U42 = U62 = U91 = U93 > cons > U31 > |0| = a__U71 = a__U72 = a__length = nil = isNatList > zeros = a__U11 = a__U21 = s = U11 = U21 = U71 = U72 = length partial status: pi(a__length#) = [1] pi(cons) = [2] pi(a__U71#) = [] pi(a__isNatList) = [] pi(tt) = [] pi(a__U72#) = [] pi(a__isNat) = [] pi(mark) = [] pi(a__zeros) = [] pi(|0|) = [] pi(zeros) = [] pi(a__U11) = [] pi(a__U21) = [] pi(a__U31) = [] pi(a__U41) = [] pi(a__U42) = [] pi(a__isNatIList) = [] pi(a__U51) = [] pi(a__U52) = [] pi(a__U61) = [] pi(a__U62) = [] pi(a__U71) = [] pi(a__U72) = [] pi(s) = [] pi(a__length) = [] pi(a__U81) = [] pi(nil) = [] pi(a__U91) = [] pi(a__U92) = [] pi(a__U93) = [] pi(take) = [] pi(a__take) = [] pi(U11) = [] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(U42) = [] pi(isNatIList) = [] pi(U51) = [] pi(U52) = [] pi(U61) = [] pi(U62) = [] pi(U71) = [] pi(U72) = [] pi(length) = [] pi(U81) = [] pi(U91) = [] pi(U92) = [] pi(U93) = [] pi(isNatList) = [] pi(isNat) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__length#(cons(N,L)) -> a__U71#(a__isNatList(L),L,N) p2: a__U71#(tt(),L,N) -> a__U72#(a__isNat(N),L) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__U41#(tt(),V2) -> a__isNatIList#(V2) p2: a__isNatIList#(cons(V1,V2)) -> a__isNat#(V1) p3: a__isNat#(s(V1)) -> a__isNat#(V1) p4: a__isNat#(length(V1)) -> a__isNatList#(V1) p5: a__isNatList#(take(V1,V2)) -> a__isNat#(V1) p6: a__isNatList#(take(V1,V2)) -> a__U61#(a__isNat(V1),V2) p7: a__U61#(tt(),V2) -> a__isNatIList#(V2) p8: a__isNatIList#(cons(V1,V2)) -> a__U41#(a__isNat(V1),V2) p9: a__isNatIList#(V) -> a__isNatList#(V) p10: a__isNatList#(cons(V1,V2)) -> a__isNat#(V1) p11: a__isNatList#(cons(V1,V2)) -> a__U51#(a__isNat(V1),V2) p12: a__U51#(tt(),V2) -> a__isNatList#(V2) and R consists of: r1: a__zeros() -> cons(|0|(),zeros()) r2: a__U11(tt()) -> tt() r3: a__U21(tt()) -> tt() r4: a__U31(tt()) -> tt() r5: a__U41(tt(),V2) -> a__U42(a__isNatIList(V2)) r6: a__U42(tt()) -> tt() r7: a__U51(tt(),V2) -> a__U52(a__isNatList(V2)) r8: a__U52(tt()) -> tt() r9: a__U61(tt(),V2) -> a__U62(a__isNatIList(V2)) r10: a__U62(tt()) -> tt() r11: a__U71(tt(),L,N) -> a__U72(a__isNat(N),L) r12: a__U72(tt(),L) -> s(a__length(mark(L))) r13: a__U81(tt()) -> nil() r14: a__U91(tt(),IL,M,N) -> a__U92(a__isNat(M),IL,M,N) r15: a__U92(tt(),IL,M,N) -> a__U93(a__isNat(N),IL,M,N) r16: a__U93(tt(),IL,M,N) -> cons(mark(N),take(M,IL)) r17: a__isNat(|0|()) -> tt() r18: a__isNat(length(V1)) -> a__U11(a__isNatList(V1)) r19: a__isNat(s(V1)) -> a__U21(a__isNat(V1)) r20: a__isNatIList(V) -> a__U31(a__isNatList(V)) r21: a__isNatIList(zeros()) -> tt() r22: a__isNatIList(cons(V1,V2)) -> a__U41(a__isNat(V1),V2) r23: a__isNatList(nil()) -> tt() r24: a__isNatList(cons(V1,V2)) -> a__U51(a__isNat(V1),V2) r25: a__isNatList(take(V1,V2)) -> a__U61(a__isNat(V1),V2) r26: a__length(nil()) -> |0|() r27: a__length(cons(N,L)) -> a__U71(a__isNatList(L),L,N) r28: a__take(|0|(),IL) -> a__U81(a__isNatIList(IL)) r29: a__take(s(M),cons(N,IL)) -> a__U91(a__isNatIList(IL),IL,M,N) r30: mark(zeros()) -> a__zeros() r31: mark(U11(X)) -> a__U11(mark(X)) r32: mark(U21(X)) -> a__U21(mark(X)) r33: mark(U31(X)) -> a__U31(mark(X)) r34: mark(U41(X1,X2)) -> a__U41(mark(X1),X2) r35: mark(U42(X)) -> a__U42(mark(X)) r36: mark(isNatIList(X)) -> a__isNatIList(X) r37: mark(U51(X1,X2)) -> a__U51(mark(X1),X2) r38: mark(U52(X)) -> a__U52(mark(X)) r39: mark(isNatList(X)) -> a__isNatList(X) r40: mark(U61(X1,X2)) -> a__U61(mark(X1),X2) r41: mark(U62(X)) -> a__U62(mark(X)) r42: mark(U71(X1,X2,X3)) -> a__U71(mark(X1),X2,X3) r43: mark(U72(X1,X2)) -> a__U72(mark(X1),X2) r44: mark(isNat(X)) -> a__isNat(X) r45: mark(length(X)) -> a__length(mark(X)) r46: mark(U81(X)) -> a__U81(mark(X)) r47: mark(U91(X1,X2,X3,X4)) -> a__U91(mark(X1),X2,X3,X4) r48: mark(U92(X1,X2,X3,X4)) -> a__U92(mark(X1),X2,X3,X4) r49: mark(U93(X1,X2,X3,X4)) -> a__U93(mark(X1),X2,X3,X4) r50: mark(take(X1,X2)) -> a__take(mark(X1),mark(X2)) r51: mark(cons(X1,X2)) -> cons(mark(X1),X2) r52: mark(|0|()) -> |0|() r53: mark(tt()) -> tt() r54: mark(s(X)) -> s(mark(X)) r55: mark(nil()) -> nil() r56: a__zeros() -> zeros() r57: a__U11(X) -> U11(X) r58: a__U21(X) -> U21(X) r59: a__U31(X) -> U31(X) r60: a__U41(X1,X2) -> U41(X1,X2) r61: a__U42(X) -> U42(X) r62: a__isNatIList(X) -> isNatIList(X) r63: a__U51(X1,X2) -> U51(X1,X2) r64: a__U52(X) -> U52(X) r65: a__isNatList(X) -> isNatList(X) r66: a__U61(X1,X2) -> U61(X1,X2) r67: a__U62(X) -> U62(X) r68: a__U71(X1,X2,X3) -> U71(X1,X2,X3) r69: a__U72(X1,X2) -> U72(X1,X2) r70: a__isNat(X) -> isNat(X) r71: a__length(X) -> length(X) r72: a__U81(X) -> U81(X) r73: a__U91(X1,X2,X3,X4) -> U91(X1,X2,X3,X4) r74: a__U92(X1,X2,X3,X4) -> U92(X1,X2,X3,X4) r75: a__U93(X1,X2,X3,X4) -> U93(X1,X2,X3,X4) r76: a__take(X1,X2) -> take(X1,X2) The set of usable rules consists of r2, r3, r4, r5, r6, r7, r8, r9, r10, r17, r18, r19, r20, r21, r22, r23, r24, r25, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r70 Take the reduction pair: lexicographic combination of reduction pairs: 1. weighted path order base order: max/plus interpretations on natural numbers: a__U41#_A(x1,x2) = max{51, x1 + 4, x2 + 38} tt_A = 10 a__isNatIList#_A(x1) = x1 + 37 cons_A(x1,x2) = max{x1 + 50, x2 + 17} a__isNat#_A(x1) = x1 + 43 s_A(x1) = x1 + 43 length_A(x1) = x1 + 14 a__isNatList#_A(x1) = x1 + 29 take_A(x1,x2) = max{42, x1 + 40, x2 + 40} a__U61#_A(x1,x2) = max{70, x1, x2 + 69} a__isNat_A(x1) = x1 + 48 a__U51#_A(x1,x2) = max{51, x1 + 30, x2 + 29} a__U42_A(x1) = max{9, x1 + 8} U42_A(x1) = x1 a__U31_A(x1) = x1 + 3 a__U41_A(x1,x2) = max{67, x1 + 18, x2 + 34} a__isNatIList_A(x1) = max{35, x1 + 17} U31_A(x1) = max{2, x1} U41_A(x1,x2) = max{x1 + 18, x2 + 34} a__U52_A(x1) = max{9, x1 + 2} a__U62_A(x1) = x1 + 3 a__isNatList_A(x1) = max{13, x1 + 5} zeros_A = 11 isNatIList_A(x1) = max{1, x1} U52_A(x1) = 0 U62_A(x1) = max{2, x1 + 1} a__U51_A(x1,x2) = max{x1 + 2, x2 + 17} a__U61_A(x1,x2) = max{x1 - 8, x2 + 40} U51_A(x1,x2) = max{x1 + 1, x2 + 1} U61_A(x1,x2) = x2 + 40 a__U11_A(x1) = max{48, x1 + 37} a__U21_A(x1) = max{91, x1 + 3} nil_A = 11 U11_A(x1) = max{2, x1 + 1} U21_A(x1) = max{2, x1 + 1} isNatList_A(x1) = x1 |0|_A = 0 isNat_A(x1) = max{1, x1} precedence: a__U51# > U31 = U51 > a__U11 = U21 = isNatList > s > a__isNat# > cons > a__U42 = nil > U42 > take = a__U41 = a__isNatIList = a__isNatList = a__U61 > tt = a__isNat = U41 > U52 > U61 > isNatIList = isNat > a__isNatList# = |0| > a__U61# = a__U31 = a__U62 = zeros = a__U51 > a__U52 = U11 > a__U41# = a__isNatIList# = length = a__U21 > U62 partial status: pi(a__U41#) = [1, 2] pi(tt) = [] pi(a__isNatIList#) = [1] pi(cons) = [1, 2] pi(a__isNat#) = [1] pi(s) = [1] pi(length) = [1] pi(a__isNatList#) = [1] pi(take) = [1, 2] pi(a__U61#) = [1, 2] pi(a__isNat) = [1] pi(a__U51#) = [2] pi(a__U42) = [1] pi(U42) = [1] pi(a__U31) = [] pi(a__U41) = [1, 2] pi(a__isNatIList) = [1] pi(U31) = [1] pi(U41) = [1, 2] pi(a__U52) = [1] pi(a__U62) = [1] pi(a__isNatList) = [1] pi(zeros) = [] pi(isNatIList) = [1] pi(U52) = [] pi(U62) = [1] pi(a__U51) = [] pi(a__U61) = [] pi(U51) = [1, 2] pi(U61) = [2] pi(a__U11) = [1] pi(a__U21) = [1] pi(nil) = [] pi(U11) = [1] pi(U21) = [1] pi(isNatList) = [1] pi(|0|) = [] pi(isNat) = [1] 2. weighted path order base order: max/plus interpretations on natural numbers: a__U41#_A(x1,x2) = max{13, x1 + 4, x2 - 1} tt_A = 12 a__isNatIList#_A(x1) = max{16, x1 - 4} cons_A(x1,x2) = max{x1 + 12, x2 + 12} a__isNat#_A(x1) = x1 + 2 s_A(x1) = x1 length_A(x1) = x1 a__isNatList#_A(x1) = max{1, x1 - 5} take_A(x1,x2) = max{x1 + 23, x2 + 29} a__U61#_A(x1,x2) = max{x1 + 15, x2 + 24} a__isNat_A(x1) = max{9, x1 + 3} a__U51#_A(x1,x2) = x2 + 2 a__U42_A(x1) = max{48, x1 + 34} U42_A(x1) = max{49, x1 + 35} a__U31_A(x1) = 44 a__U41_A(x1,x2) = max{x1 + 35, x2 + 44} a__isNatIList_A(x1) = max{43, x1 + 11} U31_A(x1) = max{45, x1 - 1} U41_A(x1,x2) = max{x1 + 36, x2 + 45} a__U52_A(x1) = max{26, x1 + 16} a__U62_A(x1) = max{43, x1} a__isNatList_A(x1) = x1 + 12 zeros_A = 0 isNatIList_A(x1) = max{44, x1 + 12} U52_A(x1) = 27 U62_A(x1) = max{44, x1 + 1} a__U51_A(x1,x2) = 25 a__U61_A(x1,x2) = 42 U51_A(x1,x2) = max{26, x1 + 3, x2 - 1} U61_A(x1,x2) = max{43, x2 - 1} a__U11_A(x1) = max{10, x1 + 1} a__U21_A(x1) = max{10, x1 + 1} nil_A = 1 U11_A(x1) = max{11, x1 + 2} U21_A(x1) = max{11, x1 + 2} isNatList_A(x1) = x1 + 13 |0|_A = 10 isNat_A(x1) = max{10, x1 + 4} precedence: a__U41# = tt = a__isNat# = s = length > a__isNatIList# = a__isNatList# > cons = a__U61# > take = a__isNat > a__U51# = a__U42 = U42 = a__U31 = a__U41 = a__isNatIList = U31 = U41 = a__U52 = a__U62 = a__isNatList = zeros = isNatIList = U52 = U62 = a__U51 = a__U61 = U51 = U61 = a__U11 = a__U21 = nil = U11 = U21 = isNatList = |0| = isNat partial status: pi(a__U41#) = [1] pi(tt) = [] pi(a__isNatIList#) = [] pi(cons) = [] pi(a__isNat#) = [1] pi(s) = [1] pi(length) = [1] pi(a__isNatList#) = [] pi(take) = [] pi(a__U61#) = [2] pi(a__isNat) = [1] pi(a__U51#) = [2] pi(a__U42) = [] pi(U42) = [] pi(a__U31) = [] pi(a__U41) = [1, 2] pi(a__isNatIList) = [1] pi(U31) = [] pi(U41) = [1] pi(a__U52) = [1] pi(a__U62) = [1] pi(a__isNatList) = [1] pi(zeros) = [] pi(isNatIList) = [] pi(U52) = [] pi(U62) = [] pi(a__U51) = [] pi(a__U61) = [] pi(U51) = [] pi(U61) = [] pi(a__U11) = [] pi(a__U21) = [] pi(nil) = [] pi(U11) = [] pi(U21) = [] pi(isNatList) = [] pi(|0|) = [] pi(isNat) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12 We remove them from the problem. Then no dependency pair remains.