YES We show the termination of the TRS R: le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) mod(|0|(),y) -> |0|() mod(s(x),|0|()) -> |0|() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) if_mod(false(),s(x),s(y)) -> s(x) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) p2: minus#(s(x),s(y)) -> minus#(x,y) p3: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) p4: mod#(s(x),s(y)) -> le#(y,x) p5: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) p6: if_mod#(true(),s(x),s(y)) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: mod(|0|(),y) -> |0|() r7: mod(s(x),|0|()) -> |0|() r8: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r9: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r10: if_mod(false(),s(x),s(y)) -> s(x) The estimated dependency graph contains the following SCCs: {p3, p5} {p1} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) p2: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: mod(|0|(),y) -> |0|() r7: mod(s(x),|0|()) -> |0|() r8: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r9: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r10: if_mod(false(),s(x),s(y)) -> s(x) The set of usable rules consists of r1, r2, r3, r4, r5 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if_mod#_A(x1,x2,x3) = max{32, x1 + 22, x2 - 1} true_A = 1 s_A(x1) = max{22, x1 + 14} mod#_A(x1,x2) = max{12, x1 + 10} minus_A(x1,x2) = x1 + 2 le_A(x1,x2) = max{5, x2 + 2} |0|_A = 5 false_A = 6 precedence: true = mod# = minus = le = |0| = false > if_mod# = s partial status: pi(if_mod#) = [] pi(true) = [] pi(s) = [] pi(mod#) = [] pi(minus) = [1] pi(le) = [2] pi(|0|) = [] pi(false) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: mod(|0|(),y) -> |0|() r7: mod(s(x),|0|()) -> |0|() r8: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r9: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r10: if_mod(false(),s(x),s(y)) -> s(x) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: mod(|0|(),y) -> |0|() r7: mod(s(x),|0|()) -> |0|() r8: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r9: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r10: if_mod(false(),s(x),s(y)) -> s(x) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: le#_A(x1,x2) = max{0, x1 - 2, x2 - 2} s_A(x1) = max{3, x1 + 1} precedence: le# = s partial status: pi(le#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(x,|0|()) -> x r5: minus(s(x),s(y)) -> minus(x,y) r6: mod(|0|(),y) -> |0|() r7: mod(s(x),|0|()) -> |0|() r8: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r9: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r10: if_mod(false(),s(x),s(y)) -> s(x) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = max{0, x1 - 2, x2 - 2} s_A(x1) = max{3, x1 + 1} precedence: minus# = s partial status: pi(minus#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.