YES We show the termination of the TRS R: f(|0|(),|1|(),x) -> f(s(x),x,x) f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: f(|0|(),|1|(),x) -> f(s(x),x,x) r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: f(|0|(),|1|(),x) -> f(s(x),x,x) r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1,x2,x3) = max{x1 + 3, x2 + 3, x3 + 4} |0|_A = 0 |1|_A = 0 s_A(x1) = x1 + 1 precedence: f# = |0| = |1| = s partial status: pi(f#) = [] pi(|0|) = [] pi(|1|) = [] pi(s) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) and R consists of: r1: f(|0|(),|1|(),x) -> f(s(x),x,x) r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) The estimated dependency graph contains the following SCCs: (no SCCs)