YES We show the termination of the TRS R: minus_active(|0|(),y) -> |0|() mark(|0|()) -> |0|() minus_active(s(x),s(y)) -> minus_active(x,y) mark(s(x)) -> s(mark(x)) ge_active(x,|0|()) -> true() mark(minus(x,y)) -> minus_active(x,y) ge_active(|0|(),s(y)) -> false() mark(ge(x,y)) -> ge_active(x,y) ge_active(s(x),s(y)) -> ge_active(x,y) mark(div(x,y)) -> div_active(mark(x),y) div_active(|0|(),s(y)) -> |0|() mark(if(x,y,z)) -> if_active(mark(x),y,z) div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) if_active(true(),x,y) -> mark(x) minus_active(x,y) -> minus(x,y) if_active(false(),x,y) -> mark(y) ge_active(x,y) -> ge(x,y) if_active(x,y,z) -> if(x,y,z) div_active(x,y) -> div(x,y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus_active#(s(x),s(y)) -> minus_active#(x,y) p2: mark#(s(x)) -> mark#(x) p3: mark#(minus(x,y)) -> minus_active#(x,y) p4: mark#(ge(x,y)) -> ge_active#(x,y) p5: ge_active#(s(x),s(y)) -> ge_active#(x,y) p6: mark#(div(x,y)) -> div_active#(mark(x),y) p7: mark#(div(x,y)) -> mark#(x) p8: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) p9: mark#(if(x,y,z)) -> mark#(x) p10: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p11: div_active#(s(x),s(y)) -> ge_active#(x,y) p12: if_active#(true(),x,y) -> mark#(x) p13: if_active#(false(),x,y) -> mark#(y) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The estimated dependency graph contains the following SCCs: {p2, p6, p7, p8, p9, p10, p12, p13} {p1} {p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(if(x,y,z)) -> mark#(x) p3: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) p4: if_active#(true(),x,y) -> mark#(x) p5: mark#(div(x,y)) -> mark#(x) p6: mark#(div(x,y)) -> div_active#(mark(x),y) p7: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p8: mark#(s(x)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if_active#_A(x1,x2,x3) = max{171, x2 - 23, x3 + 128} false_A = 159 mark#_A(x1) = max{171, x1 - 24} if_A(x1,x2,x3) = max{x1 + 25, x2 + 23, x3 + 196} mark_A(x1) = x1 + 26 true_A = 159 div_A(x1,x2) = max{157, x1 + 156} div_active#_A(x1,x2) = max{171, x1 + 100} s_A(x1) = max{64, x1 + 29} ge_active_A(x1,x2) = x1 + 160 minus_A(x1,x2) = max{8, x1 - 34} |0|_A = 0 minus_active_A(x1,x2) = max{9, x1 - 8} div_active_A(x1,x2) = max{181, x1 + 156} if_active_A(x1,x2,x3) = max{x1 + 25, x2 + 27, x3 + 220} ge_A(x1,x2) = x1 + 160 precedence: if_active# = mark# = div_active# > false = if = mark = true = ge_active = minus_active = div_active = if_active = ge > div = s = minus = |0| partial status: pi(if_active#) = [] pi(false) = [] pi(mark#) = [] pi(if) = [] pi(mark) = [] pi(true) = [] pi(div) = [] pi(div_active#) = [] pi(s) = [1] pi(ge_active) = [] pi(minus) = [] pi(|0|) = [] pi(minus_active) = [] pi(div_active) = [] pi(if_active) = [] pi(ge) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) p3: if_active#(true(),x,y) -> mark#(x) p4: mark#(div(x,y)) -> mark#(x) p5: mark#(div(x,y)) -> div_active#(mark(x),y) p6: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p7: mark#(s(x)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(s(x)) -> mark#(x) p3: mark#(div(x,y)) -> div_active#(mark(x),y) p4: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p5: if_active#(true(),x,y) -> mark#(x) p6: mark#(div(x,y)) -> mark#(x) p7: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if_active#_A(x1,x2,x3) = max{x1, x2 + 13, x3 + 106} false_A = 4 mark#_A(x1) = max{3, x1} s_A(x1) = max{52, x1 + 4} div_A(x1,x2) = max{90, x1 + 85} div_active#_A(x1,x2) = x1 + 70 mark_A(x1) = max{14, x1 + 11} ge_active_A(x1,x2) = 110 minus_A(x1,x2) = 19 |0|_A = 15 true_A = 4 if_A(x1,x2,x3) = max{x1 + 11, x2 + 13, x3 + 106} minus_active_A(x1,x2) = 19 div_active_A(x1,x2) = max{95, x1 + 85} if_active_A(x1,x2,x3) = max{x1 + 11, x2 + 14, x3 + 106} ge_A(x1,x2) = 99 precedence: false > if_active# = mark# = s = div = div_active# = mark = ge_active = minus = |0| = true = if = minus_active = div_active = if_active = ge partial status: pi(if_active#) = [2] pi(false) = [] pi(mark#) = [1] pi(s) = [] pi(div) = [] pi(div_active#) = [] pi(mark) = [1] pi(ge_active) = [] pi(minus) = [] pi(|0|) = [] pi(true) = [] pi(if) = [2] pi(minus_active) = [] pi(div_active) = [] pi(if_active) = [2] pi(ge) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(s(x)) -> mark#(x) p3: mark#(div(x,y)) -> div_active#(mark(x),y) p4: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p5: if_active#(true(),x,y) -> mark#(x) p6: mark#(div(x,y)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(div(x,y)) -> mark#(x) p3: mark#(div(x,y)) -> div_active#(mark(x),y) p4: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p5: if_active#(true(),x,y) -> mark#(x) p6: mark#(s(x)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if_active#_A(x1,x2,x3) = max{x1 - 2, x2 - 36, x3 + 4} false_A = 0 mark#_A(x1) = max{3, x1 - 36} div_A(x1,x2) = max{x1 + 6, x2 + 57} div_active#_A(x1,x2) = max{x1 - 31, x2 + 21} mark_A(x1) = max{22, x1} s_A(x1) = max{4, x1} ge_active_A(x1,x2) = x2 + 22 minus_A(x1,x2) = max{x1 - 38, x2 + 15} |0|_A = 13 true_A = 12 minus_active_A(x1,x2) = max{x1 - 38, x2 + 15} div_active_A(x1,x2) = max{x1 + 6, x2 + 57} if_active_A(x1,x2,x3) = max{23, x2, x3 + 22} if_A(x1,x2,x3) = max{23, x2, x3 + 22} ge_A(x1,x2) = x2 + 22 precedence: if_active# = mark# = div = div_active# = div_active > mark = if_active > s > ge_active = ge > minus = minus_active = if > |0| > false = true partial status: pi(if_active#) = [] pi(false) = [] pi(mark#) = [] pi(div) = [] pi(div_active#) = [] pi(mark) = [1] pi(s) = [] pi(ge_active) = [] pi(minus) = [] pi(|0|) = [] pi(true) = [] pi(minus_active) = [] pi(div_active) = [] pi(if_active) = [2] pi(if) = [2, 3] pi(ge) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(div(x,y)) -> div_active#(mark(x),y) p3: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p4: if_active#(true(),x,y) -> mark#(x) p5: mark#(s(x)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(s(x)) -> mark#(x) p3: mark#(div(x,y)) -> div_active#(mark(x),y) p4: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p5: if_active#(true(),x,y) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if_active#_A(x1,x2,x3) = max{x1 + 64, x2 + 44, x3 + 63} false_A = 0 mark#_A(x1) = max{63, x1 + 41} s_A(x1) = max{64, x1 + 23} div_A(x1,x2) = x1 + 62 div_active#_A(x1,x2) = x1 + 86 mark_A(x1) = x1 + 17 ge_active_A(x1,x2) = x1 + 16 minus_A(x1,x2) = 21 |0|_A = 32 true_A = 7 minus_active_A(x1,x2) = 38 div_active_A(x1,x2) = max{78, x1 + 62} if_active_A(x1,x2,x3) = max{x2 + 20, x3 + 47} if_A(x1,x2,x3) = max{x2 + 3, x3 + 46} ge_A(x1,x2) = max{5, x1 - 1} precedence: mark# = div_active# > if_active# = if > s = div = mark = |0| = minus_active = div_active = if_active > false = ge_active = true > minus > ge partial status: pi(if_active#) = [2, 3] pi(false) = [] pi(mark#) = [1] pi(s) = [1] pi(div) = [] pi(div_active#) = [1] pi(mark) = [1] pi(ge_active) = [] pi(minus) = [] pi(|0|) = [] pi(true) = [] pi(minus_active) = [] pi(div_active) = [1] pi(if_active) = [3] pi(if) = [] pi(ge) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(s(x)) -> mark#(x) p3: mark#(div(x,y)) -> div_active#(mark(x),y) p4: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(div(x,y)) -> div_active#(mark(x),y) p3: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p4: mark#(s(x)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if_active#_A(x1,x2,x3) = x3 + 36 false_A = 4 mark#_A(x1) = max{35, x1 + 22} div_A(x1,x2) = max{x1 + 12, x2 + 18} div_active#_A(x1,x2) = x2 + 39 mark_A(x1) = x1 + 6 s_A(x1) = x1 ge_active_A(x1,x2) = x1 + 9 minus_A(x1,x2) = max{2, x1 - 6} |0|_A = 3 minus_active_A(x1,x2) = max{2, x1} div_active_A(x1,x2) = max{x1 + 12, x2 + 24} if_active_A(x1,x2,x3) = max{x1 + 2, x2 + 6, x3 + 6} true_A = 4 if_A(x1,x2,x3) = max{x1 + 2, x2 + 3, x3} ge_A(x1,x2) = x1 + 9 precedence: false = mark# = div = mark = minus_active = div_active = if_active = if > if_active# = div_active# = s = ge_active = minus = |0| = true = ge partial status: pi(if_active#) = [] pi(false) = [] pi(mark#) = [] pi(div) = [] pi(div_active#) = [2] pi(mark) = [] pi(s) = [] pi(ge_active) = [] pi(minus) = [] pi(|0|) = [] pi(minus_active) = [] pi(div_active) = [] pi(if_active) = [] pi(true) = [] pi(if) = [] pi(ge) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(div(x,y)) -> div_active#(mark(x),y) p2: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p3: mark#(s(x)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The estimated dependency graph contains the following SCCs: {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(s(x)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 2 s_A(x1) = x1 + 2 precedence: mark# = s partial status: pi(mark#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus_active#(s(x),s(y)) -> minus_active#(x,y) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: minus_active#_A(x1,x2) = max{0, x1 - 2, x2 - 2} s_A(x1) = max{3, x1 + 1} precedence: minus_active# = s partial status: pi(minus_active#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ge_active#(s(x),s(y)) -> ge_active#(x,y) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: ge_active#_A(x1,x2) = max{0, x1 - 2, x2 - 2} s_A(x1) = max{3, x1 + 1} precedence: ge_active# = s partial status: pi(ge_active#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.