YES We show the termination of the TRS R: active(f(x)) -> mark(f(f(x))) chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) mat(f(x),f(y())) -> f(mat(x,y())) chk(no(c())) -> active(c()) mat(f(x),c()) -> no(c()) f(active(x)) -> active(f(x)) f(no(x)) -> no(f(x)) f(mark(x)) -> mark(f(x)) tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(x)) -> f#(f(x)) p2: chk#(no(f(x))) -> f#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) p3: chk#(no(f(x))) -> chk#(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x)) p4: chk#(no(f(x))) -> mat#(f(f(f(f(f(f(f(f(f(f(X())))))))))),x) p5: chk#(no(f(x))) -> f#(f(f(f(f(f(f(f(f(f(X())))))))))) p6: chk#(no(f(x))) -> f#(f(f(f(f(f(f(f(f(X()))))))))) p7: chk#(no(f(x))) -> f#(f(f(f(f(f(f(f(X())))))))) p8: chk#(no(f(x))) -> f#(f(f(f(f(f(f(X()))))))) p9: chk#(no(f(x))) -> f#(f(f(f(f(f(X())))))) p10: chk#(no(f(x))) -> f#(f(f(f(f(X()))))) p11: chk#(no(f(x))) -> f#(f(f(f(X())))) p12: chk#(no(f(x))) -> f#(f(f(X()))) p13: chk#(no(f(x))) -> f#(f(X())) p14: chk#(no(f(x))) -> f#(X()) p15: mat#(f(x),f(y())) -> f#(mat(x,y())) p16: mat#(f(x),f(y())) -> mat#(x,y()) p17: chk#(no(c())) -> active#(c()) p18: f#(active(x)) -> active#(f(x)) p19: f#(active(x)) -> f#(x) p20: f#(no(x)) -> f#(x) p21: f#(mark(x)) -> f#(x) p22: tp#(mark(x)) -> tp#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) p23: tp#(mark(x)) -> chk#(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x)) p24: tp#(mark(x)) -> mat#(f(f(f(f(f(f(f(f(f(f(X())))))))))),x) p25: tp#(mark(x)) -> f#(f(f(f(f(f(f(f(f(f(X())))))))))) p26: tp#(mark(x)) -> f#(f(f(f(f(f(f(f(f(X()))))))))) p27: tp#(mark(x)) -> f#(f(f(f(f(f(f(f(X())))))))) p28: tp#(mark(x)) -> f#(f(f(f(f(f(f(X()))))))) p29: tp#(mark(x)) -> f#(f(f(f(f(f(X())))))) p30: tp#(mark(x)) -> f#(f(f(f(f(X()))))) p31: tp#(mark(x)) -> f#(f(f(f(X())))) p32: tp#(mark(x)) -> f#(f(f(X()))) p33: tp#(mark(x)) -> f#(f(X())) p34: tp#(mark(x)) -> f#(X()) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The estimated dependency graph contains the following SCCs: {p22} {p3} {p1, p18, p19, p20, p21} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: tp#(mark(x)) -> tp#(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: tp#_A(x1) = max{111, x1 + 105} mark_A(x1) = max{34, x1 - 2} chk_A(x1) = max{19, x1 - 132} mat_A(x1,x2) = max{153, x2 + 24} f_A(x1) = x1 + 23 X_A = 1 active_A(x1) = x1 + 21 no_A(x1) = x1 + 153 y_A = 154 c_A = 0 precedence: mat > mark = chk = f = X = active = no = c > tp# = y partial status: pi(tp#) = [1] pi(mark) = [] pi(chk) = [] pi(mat) = [] pi(f) = [] pi(X) = [] pi(active) = [] pi(no) = [] pi(y) = [] pi(c) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: chk#(no(f(x))) -> chk#(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x)) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The set of usable rules consists of r3, r5 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: chk#_A(x1) = max{104, x1 + 65} no_A(x1) = x1 + 70 f_A(x1) = max{33, x1 + 18} mat_A(x1,x2) = x2 + 71 X_A = 17 y_A = 1 c_A = 17 precedence: chk# = no = f = mat = X = y = c partial status: pi(chk#) = [1] pi(no) = [] pi(f) = [1] pi(mat) = [2] pi(X) = [] pi(y) = [] pi(c) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(x)) -> f#(f(x)) p2: f#(mark(x)) -> f#(x) p3: f#(no(x)) -> f#(x) p4: f#(active(x)) -> f#(x) p5: f#(active(x)) -> active#(f(x)) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The set of usable rules consists of r1, r6, r7, r8 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = x1 + 10 f_A(x1) = x1 + 2 f#_A(x1) = max{12, x1 + 7} mark_A(x1) = x1 + 3 no_A(x1) = x1 + 6 active_A(x1) = x1 + 6 precedence: active# = f = f# = mark = no = active partial status: pi(active#) = [1] pi(f) = [1] pi(f#) = [] pi(mark) = [1] pi(no) = [1] pi(active) = [1] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(x)) -> f#(f(x)) p2: f#(mark(x)) -> f#(x) p3: f#(no(x)) -> f#(x) p4: f#(active(x)) -> f#(x) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The estimated dependency graph contains the following SCCs: {p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(x)) -> f#(x) p2: f#(active(x)) -> f#(x) p3: f#(no(x)) -> f#(x) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = x1 + 2 mark_A(x1) = x1 + 1 active_A(x1) = x1 no_A(x1) = x1 precedence: f# = mark = active = no partial status: pi(f#) = [1] pi(mark) = [1] pi(active) = [1] pi(no) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(active(x)) -> f#(x) p2: f#(no(x)) -> f#(x) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(active(x)) -> f#(x) p2: f#(no(x)) -> f#(x) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = x1 + 1 active_A(x1) = x1 no_A(x1) = x1 precedence: f# = active = no partial status: pi(f#) = [1] pi(active) = [1] pi(no) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(no(x)) -> f#(x) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(no(x)) -> f#(x) and R consists of: r1: active(f(x)) -> mark(f(f(x))) r2: chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) r3: mat(f(x),f(y())) -> f(mat(x,y())) r4: chk(no(c())) -> active(c()) r5: mat(f(x),c()) -> no(c()) r6: f(active(x)) -> active(f(x)) r7: f(no(x)) -> no(f(x)) r8: f(mark(x)) -> mark(f(x)) r9: tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1) = x1 + 2 no_A(x1) = x1 + 2 precedence: f# = no partial status: pi(f#) = [1] pi(no) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.