YES We show the termination of the TRS R: half(|0|()) -> |0|() half(s(|0|())) -> |0|() half(s(s(x))) -> s(half(x)) inc(|0|()) -> |0|() inc(s(x)) -> s(inc(x)) zero(|0|()) -> true() zero(s(x)) -> false() p(|0|()) -> |0|() p(s(x)) -> x bits(x) -> bitIter(x,|0|()) bitIter(x,y) -> if(zero(x),x,inc(y)) if(true(),x,y) -> p(y) if(false(),x,y) -> bitIter(half(x),y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: half#(s(s(x))) -> half#(x) p2: inc#(s(x)) -> inc#(x) p3: bits#(x) -> bitIter#(x,|0|()) p4: bitIter#(x,y) -> if#(zero(x),x,inc(y)) p5: bitIter#(x,y) -> zero#(x) p6: bitIter#(x,y) -> inc#(y) p7: if#(true(),x,y) -> p#(y) p8: if#(false(),x,y) -> bitIter#(half(x),y) p9: if#(false(),x,y) -> half#(x) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(|0|())) -> |0|() r3: half(s(s(x))) -> s(half(x)) r4: inc(|0|()) -> |0|() r5: inc(s(x)) -> s(inc(x)) r6: zero(|0|()) -> true() r7: zero(s(x)) -> false() r8: p(|0|()) -> |0|() r9: p(s(x)) -> x r10: bits(x) -> bitIter(x,|0|()) r11: bitIter(x,y) -> if(zero(x),x,inc(y)) r12: if(true(),x,y) -> p(y) r13: if(false(),x,y) -> bitIter(half(x),y) The estimated dependency graph contains the following SCCs: {p4, p8} {p1} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: bitIter#(x,y) -> if#(zero(x),x,inc(y)) p2: if#(false(),x,y) -> bitIter#(half(x),y) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(|0|())) -> |0|() r3: half(s(s(x))) -> s(half(x)) r4: inc(|0|()) -> |0|() r5: inc(s(x)) -> s(inc(x)) r6: zero(|0|()) -> true() r7: zero(s(x)) -> false() r8: p(|0|()) -> |0|() r9: p(s(x)) -> x r10: bits(x) -> bitIter(x,|0|()) r11: bitIter(x,y) -> if(zero(x),x,inc(y)) r12: if(true(),x,y) -> p(y) r13: if(false(),x,y) -> bitIter(half(x),y) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: bitIter#_A(x1,x2) = x1 + 10 if#_A(x1,x2,x3) = max{x1, x2 + 9} zero_A(x1) = x1 inc_A(x1) = x1 + 6 false_A = 19 half_A(x1) = max{8, x1 - 12} |0|_A = 2 s_A(x1) = x1 + 20 true_A = 1 precedence: half > bitIter# > if# > zero = inc = false = |0| = s = true partial status: pi(bitIter#) = [1] pi(if#) = [1] pi(zero) = [] pi(inc) = [] pi(false) = [] pi(half) = [] pi(|0|) = [] pi(s) = [] pi(true) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: bitIter#(x,y) -> if#(zero(x),x,inc(y)) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(|0|())) -> |0|() r3: half(s(s(x))) -> s(half(x)) r4: inc(|0|()) -> |0|() r5: inc(s(x)) -> s(inc(x)) r6: zero(|0|()) -> true() r7: zero(s(x)) -> false() r8: p(|0|()) -> |0|() r9: p(s(x)) -> x r10: bits(x) -> bitIter(x,|0|()) r11: bitIter(x,y) -> if(zero(x),x,inc(y)) r12: if(true(),x,y) -> p(y) r13: if(false(),x,y) -> bitIter(half(x),y) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: half#(s(s(x))) -> half#(x) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(|0|())) -> |0|() r3: half(s(s(x))) -> s(half(x)) r4: inc(|0|()) -> |0|() r5: inc(s(x)) -> s(inc(x)) r6: zero(|0|()) -> true() r7: zero(s(x)) -> false() r8: p(|0|()) -> |0|() r9: p(s(x)) -> x r10: bits(x) -> bitIter(x,|0|()) r11: bitIter(x,y) -> if(zero(x),x,inc(y)) r12: if(true(),x,y) -> p(y) r13: if(false(),x,y) -> bitIter(half(x),y) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: half#_A(x1) = x1 + 5 s_A(x1) = x1 + 2 precedence: half# = s partial status: pi(half#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: inc#(s(x)) -> inc#(x) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(|0|())) -> |0|() r3: half(s(s(x))) -> s(half(x)) r4: inc(|0|()) -> |0|() r5: inc(s(x)) -> s(inc(x)) r6: zero(|0|()) -> true() r7: zero(s(x)) -> false() r8: p(|0|()) -> |0|() r9: p(s(x)) -> x r10: bits(x) -> bitIter(x,|0|()) r11: bitIter(x,y) -> if(zero(x),x,inc(y)) r12: if(true(),x,y) -> p(y) r13: if(false(),x,y) -> bitIter(half(x),y) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: inc#_A(x1) = x1 + 2 s_A(x1) = x1 + 2 precedence: inc# = s partial status: pi(inc#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.