YES We show the termination of the TRS R: is_empty(nil()) -> true() is_empty(cons(x,l)) -> false() hd(cons(x,l)) -> x tl(cons(x,l)) -> l append(l1,l2) -> ifappend(l1,l2,is_empty(l1)) ifappend(l1,l2,true()) -> l2 ifappend(l1,l2,false()) -> cons(hd(l1),append(tl(l1),l2)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: append#(l1,l2) -> ifappend#(l1,l2,is_empty(l1)) p2: append#(l1,l2) -> is_empty#(l1) p3: ifappend#(l1,l2,false()) -> hd#(l1) p4: ifappend#(l1,l2,false()) -> append#(tl(l1),l2) p5: ifappend#(l1,l2,false()) -> tl#(l1) and R consists of: r1: is_empty(nil()) -> true() r2: is_empty(cons(x,l)) -> false() r3: hd(cons(x,l)) -> x r4: tl(cons(x,l)) -> l r5: append(l1,l2) -> ifappend(l1,l2,is_empty(l1)) r6: ifappend(l1,l2,true()) -> l2 r7: ifappend(l1,l2,false()) -> cons(hd(l1),append(tl(l1),l2)) The estimated dependency graph contains the following SCCs: {p1, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: append#(l1,l2) -> ifappend#(l1,l2,is_empty(l1)) p2: ifappend#(l1,l2,false()) -> append#(tl(l1),l2) and R consists of: r1: is_empty(nil()) -> true() r2: is_empty(cons(x,l)) -> false() r3: hd(cons(x,l)) -> x r4: tl(cons(x,l)) -> l r5: append(l1,l2) -> ifappend(l1,l2,is_empty(l1)) r6: ifappend(l1,l2,true()) -> l2 r7: ifappend(l1,l2,false()) -> cons(hd(l1),append(tl(l1),l2)) The set of usable rules consists of r1, r2, r4 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: append#_A(x1,x2) = x1 + 6 ifappend#_A(x1,x2,x3) = max{x1 + 5, x3 + 3} is_empty_A(x1) = max{0, x1 - 1} false_A = 10 tl_A(x1) = max{6, x1 - 2} nil_A = 3 true_A = 1 cons_A(x1,x2) = max{x1 + 12, x2 + 12} precedence: append# = ifappend# = is_empty = false = tl = nil = true = cons partial status: pi(append#) = [] pi(ifappend#) = [] pi(is_empty) = [] pi(false) = [] pi(tl) = [] pi(nil) = [] pi(true) = [] pi(cons) = [2] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: append#(l1,l2) -> ifappend#(l1,l2,is_empty(l1)) and R consists of: r1: is_empty(nil()) -> true() r2: is_empty(cons(x,l)) -> false() r3: hd(cons(x,l)) -> x r4: tl(cons(x,l)) -> l r5: append(l1,l2) -> ifappend(l1,l2,is_empty(l1)) r6: ifappend(l1,l2,true()) -> l2 r7: ifappend(l1,l2,false()) -> cons(hd(l1),append(tl(l1),l2)) The estimated dependency graph contains the following SCCs: (no SCCs)