YES We show the termination of the TRS R: +(x,|0|()) -> x +(|0|(),x) -> x +(s(x),s(y)) -> s(s(+(x,y))) +(+(x,y),z) -> +(x,+(y,z)) *(x,|0|()) -> |0|() *(|0|(),x) -> |0|() *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) *(*(x,y),z) -> *(x,*(y,z)) sum(nil()) -> |0|() sum(cons(x,l)) -> +(x,sum(l)) prod(nil()) -> s(|0|()) prod(cons(x,l)) -> *(x,prod(l)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),s(y)) -> +#(x,y) p2: +#(+(x,y),z) -> +#(x,+(y,z)) p3: +#(+(x,y),z) -> +#(y,z) p4: *#(s(x),s(y)) -> +#(*(x,y),+(x,y)) p5: *#(s(x),s(y)) -> *#(x,y) p6: *#(s(x),s(y)) -> +#(x,y) p7: *#(*(x,y),z) -> *#(x,*(y,z)) p8: *#(*(x,y),z) -> *#(y,z) p9: sum#(cons(x,l)) -> +#(x,sum(l)) p10: sum#(cons(x,l)) -> sum#(l) p11: prod#(cons(x,l)) -> *#(x,prod(l)) p12: prod#(cons(x,l)) -> prod#(l) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: +(+(x,y),z) -> +(x,+(y,z)) r5: *(x,|0|()) -> |0|() r6: *(|0|(),x) -> |0|() r7: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r8: *(*(x,y),z) -> *(x,*(y,z)) r9: sum(nil()) -> |0|() r10: sum(cons(x,l)) -> +(x,sum(l)) r11: prod(nil()) -> s(|0|()) r12: prod(cons(x,l)) -> *(x,prod(l)) The estimated dependency graph contains the following SCCs: {p10} {p12} {p5, p7, p8} {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(cons(x,l)) -> sum#(l) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: +(+(x,y),z) -> +(x,+(y,z)) r5: *(x,|0|()) -> |0|() r6: *(|0|(),x) -> |0|() r7: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r8: *(*(x,y),z) -> *(x,*(y,z)) r9: sum(nil()) -> |0|() r10: sum(cons(x,l)) -> +(x,sum(l)) r11: prod(nil()) -> s(|0|()) r12: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: sum#_A(x1) = x1 + 2 cons_A(x1,x2) = max{x1 + 1, x2 + 1} precedence: sum# = cons partial status: pi(sum#) = [] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: prod#(cons(x,l)) -> prod#(l) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: +(+(x,y),z) -> +(x,+(y,z)) r5: *(x,|0|()) -> |0|() r6: *(|0|(),x) -> |0|() r7: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r8: *(*(x,y),z) -> *(x,*(y,z)) r9: sum(nil()) -> |0|() r10: sum(cons(x,l)) -> +(x,sum(l)) r11: prod(nil()) -> s(|0|()) r12: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: prod#_A(x1) = x1 + 2 cons_A(x1,x2) = max{x1 + 1, x2 + 1} precedence: prod# = cons partial status: pi(prod#) = [] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(*(x,y),z) -> *#(y,z) p2: *#(*(x,y),z) -> *#(x,*(y,z)) p3: *#(s(x),s(y)) -> *#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: +(+(x,y),z) -> +(x,+(y,z)) r5: *(x,|0|()) -> |0|() r6: *(|0|(),x) -> |0|() r7: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r8: *(*(x,y),z) -> *(x,*(y,z)) r9: sum(nil()) -> |0|() r10: sum(cons(x,l)) -> +(x,sum(l)) r11: prod(nil()) -> s(|0|()) r12: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: *#_A(x1,x2) = x1 + 4 *_A(x1,x2) = max{3, x1, x2} s_A(x1) = x1 +_A(x1,x2) = max{x1, x2} |0|_A = 4 precedence: * > + > s > *# = |0| partial status: pi(*#) = [1] pi(*) = [1, 2] pi(s) = [1] pi(+) = [1, 2] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: *#(*(x,y),z) -> *#(x,*(y,z)) p2: *#(s(x),s(y)) -> *#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: +(+(x,y),z) -> +(x,+(y,z)) r5: *(x,|0|()) -> |0|() r6: *(|0|(),x) -> |0|() r7: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r8: *(*(x,y),z) -> *(x,*(y,z)) r9: sum(nil()) -> |0|() r10: sum(cons(x,l)) -> +(x,sum(l)) r11: prod(nil()) -> s(|0|()) r12: prod(cons(x,l)) -> *(x,prod(l)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(*(x,y),z) -> *#(x,*(y,z)) p2: *#(s(x),s(y)) -> *#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: +(+(x,y),z) -> +(x,+(y,z)) r5: *(x,|0|()) -> |0|() r6: *(|0|(),x) -> |0|() r7: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r8: *(*(x,y),z) -> *(x,*(y,z)) r9: sum(nil()) -> |0|() r10: sum(cons(x,l)) -> +(x,sum(l)) r11: prod(nil()) -> s(|0|()) r12: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: *#_A(x1,x2) = x1 + 6 *_A(x1,x2) = max{5, x1 + 3, x2} s_A(x1) = max{1, x1} +_A(x1,x2) = max{5, x1, x2} |0|_A = 0 precedence: *# = * = s = + = |0| partial status: pi(*#) = [] pi(*) = [1, 2] pi(s) = [] pi(+) = [1, 2] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: *#(s(x),s(y)) -> *#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: +(+(x,y),z) -> +(x,+(y,z)) r5: *(x,|0|()) -> |0|() r6: *(|0|(),x) -> |0|() r7: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r8: *(*(x,y),z) -> *(x,*(y,z)) r9: sum(nil()) -> |0|() r10: sum(cons(x,l)) -> +(x,sum(l)) r11: prod(nil()) -> s(|0|()) r12: prod(cons(x,l)) -> *(x,prod(l)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(s(x),s(y)) -> *#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: +(+(x,y),z) -> +(x,+(y,z)) r5: *(x,|0|()) -> |0|() r6: *(|0|(),x) -> |0|() r7: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r8: *(*(x,y),z) -> *(x,*(y,z)) r9: sum(nil()) -> |0|() r10: sum(cons(x,l)) -> +(x,sum(l)) r11: prod(nil()) -> s(|0|()) r12: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: *#_A(x1,x2) = max{0, x1 - 2, x2 - 2} s_A(x1) = max{3, x1 + 1} precedence: *# = s partial status: pi(*#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),s(y)) -> +#(x,y) p2: +#(+(x,y),z) -> +#(y,z) p3: +#(+(x,y),z) -> +#(x,+(y,z)) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: +(+(x,y),z) -> +(x,+(y,z)) r5: *(x,|0|()) -> |0|() r6: *(|0|(),x) -> |0|() r7: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r8: *(*(x,y),z) -> *(x,*(y,z)) r9: sum(nil()) -> |0|() r10: sum(cons(x,l)) -> +(x,sum(l)) r11: prod(nil()) -> s(|0|()) r12: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: +#_A(x1,x2) = max{x1 + 3, x2 + 2} s_A(x1) = x1 +_A(x1,x2) = max{x1 + 1, x2} |0|_A = 0 precedence: s = + > +# = |0| partial status: pi(+#) = [1, 2] pi(s) = [] pi(+) = [] pi(|0|) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),s(y)) -> +#(x,y) p2: +#(+(x,y),z) -> +#(y,z) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: +(+(x,y),z) -> +(x,+(y,z)) r5: *(x,|0|()) -> |0|() r6: *(|0|(),x) -> |0|() r7: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r8: *(*(x,y),z) -> *(x,*(y,z)) r9: sum(nil()) -> |0|() r10: sum(cons(x,l)) -> +(x,sum(l)) r11: prod(nil()) -> s(|0|()) r12: prod(cons(x,l)) -> *(x,prod(l)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),s(y)) -> +#(x,y) p2: +#(+(x,y),z) -> +#(y,z) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: +(+(x,y),z) -> +(x,+(y,z)) r5: *(x,|0|()) -> |0|() r6: *(|0|(),x) -> |0|() r7: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r8: *(*(x,y),z) -> *(x,*(y,z)) r9: sum(nil()) -> |0|() r10: sum(cons(x,l)) -> +(x,sum(l)) r11: prod(nil()) -> s(|0|()) r12: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: +#_A(x1,x2) = max{0, x1 - 2} s_A(x1) = max{2, x1} +_A(x1,x2) = max{3, x1 - 1, x2 + 1} precedence: +# = s = + partial status: pi(+#) = [] pi(s) = [1] pi(+) = [2] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),s(y)) -> +#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: +(+(x,y),z) -> +(x,+(y,z)) r5: *(x,|0|()) -> |0|() r6: *(|0|(),x) -> |0|() r7: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r8: *(*(x,y),z) -> *(x,*(y,z)) r9: sum(nil()) -> |0|() r10: sum(cons(x,l)) -> +(x,sum(l)) r11: prod(nil()) -> s(|0|()) r12: prod(cons(x,l)) -> *(x,prod(l)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),s(y)) -> +#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: +(+(x,y),z) -> +(x,+(y,z)) r5: *(x,|0|()) -> |0|() r6: *(|0|(),x) -> |0|() r7: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r8: *(*(x,y),z) -> *(x,*(y,z)) r9: sum(nil()) -> |0|() r10: sum(cons(x,l)) -> +(x,sum(l)) r11: prod(nil()) -> s(|0|()) r12: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: +#_A(x1,x2) = max{0, x1 - 2, x2 - 2} s_A(x1) = max{3, x1 + 1} precedence: +# = s partial status: pi(+#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.