YES We show the termination of the TRS R: D(t()) -> |1|() D(constant()) -> |0|() D(+(x,y)) -> +(D(x),D(y)) D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) D(-(x,y)) -> -(D(x),D(y)) D(minus(x)) -> minus(D(x)) D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) D(ln(x)) -> div(D(x),x) D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(+(x,y)) -> D#(x) p2: D#(+(x,y)) -> D#(y) p3: D#(*(x,y)) -> D#(x) p4: D#(*(x,y)) -> D#(y) p5: D#(-(x,y)) -> D#(x) p6: D#(-(x,y)) -> D#(y) p7: D#(minus(x)) -> D#(x) p8: D#(div(x,y)) -> D#(x) p9: D#(div(x,y)) -> D#(y) p10: D#(ln(x)) -> D#(x) p11: D#(pow(x,y)) -> D#(x) p12: D#(pow(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(+(x,y)) -> D#(x) p2: D#(pow(x,y)) -> D#(y) p3: D#(pow(x,y)) -> D#(x) p4: D#(ln(x)) -> D#(x) p5: D#(div(x,y)) -> D#(y) p6: D#(div(x,y)) -> D#(x) p7: D#(minus(x)) -> D#(x) p8: D#(-(x,y)) -> D#(y) p9: D#(-(x,y)) -> D#(x) p10: D#(*(x,y)) -> D#(y) p11: D#(*(x,y)) -> D#(x) p12: D#(+(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = max{2, x1 - 4} +_A(x1,x2) = max{7, x1 + 3, x2 + 3} pow_A(x1,x2) = max{x1 + 1, x2} ln_A(x1) = x1 div_A(x1,x2) = max{x1 + 1, x2} minus_A(x1) = x1 -_A(x1,x2) = max{x1 + 5, x2} *_A(x1,x2) = max{2, x1, x2} precedence: D# = + = pow = ln = div = minus = - = * partial status: pi(D#) = [] pi(+) = [2] pi(pow) = [2] pi(ln) = [1] pi(div) = [2] pi(minus) = [1] pi(-) = [2] pi(*) = [2] The next rules are strictly ordered: p12 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(+(x,y)) -> D#(x) p2: D#(pow(x,y)) -> D#(y) p3: D#(pow(x,y)) -> D#(x) p4: D#(ln(x)) -> D#(x) p5: D#(div(x,y)) -> D#(y) p6: D#(div(x,y)) -> D#(x) p7: D#(minus(x)) -> D#(x) p8: D#(-(x,y)) -> D#(y) p9: D#(-(x,y)) -> D#(x) p10: D#(*(x,y)) -> D#(y) p11: D#(*(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(+(x,y)) -> D#(x) p2: D#(*(x,y)) -> D#(x) p3: D#(*(x,y)) -> D#(y) p4: D#(-(x,y)) -> D#(x) p5: D#(-(x,y)) -> D#(y) p6: D#(minus(x)) -> D#(x) p7: D#(div(x,y)) -> D#(x) p8: D#(div(x,y)) -> D#(y) p9: D#(ln(x)) -> D#(x) p10: D#(pow(x,y)) -> D#(x) p11: D#(pow(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = max{4, x1 + 3} +_A(x1,x2) = max{x1 + 1, x2} *_A(x1,x2) = max{x1, x2 + 2} -_A(x1,x2) = max{x1, x2} minus_A(x1) = x1 div_A(x1,x2) = max{x1, x2} ln_A(x1) = x1 pow_A(x1,x2) = max{x1 + 1, x2} precedence: D# > + = * = - = minus = div = ln = pow partial status: pi(D#) = [] pi(+) = [2] pi(*) = [2] pi(-) = [2] pi(minus) = [1] pi(div) = [2] pi(ln) = [1] pi(pow) = [2] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(+(x,y)) -> D#(x) p2: D#(*(x,y)) -> D#(x) p3: D#(-(x,y)) -> D#(x) p4: D#(-(x,y)) -> D#(y) p5: D#(minus(x)) -> D#(x) p6: D#(div(x,y)) -> D#(x) p7: D#(div(x,y)) -> D#(y) p8: D#(ln(x)) -> D#(x) p9: D#(pow(x,y)) -> D#(x) p10: D#(pow(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(+(x,y)) -> D#(x) p2: D#(pow(x,y)) -> D#(y) p3: D#(pow(x,y)) -> D#(x) p4: D#(ln(x)) -> D#(x) p5: D#(div(x,y)) -> D#(y) p6: D#(div(x,y)) -> D#(x) p7: D#(minus(x)) -> D#(x) p8: D#(-(x,y)) -> D#(y) p9: D#(-(x,y)) -> D#(x) p10: D#(*(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = x1 + 4 +_A(x1,x2) = max{x1, x2} pow_A(x1,x2) = max{x1, x2} ln_A(x1) = x1 div_A(x1,x2) = max{x1, x2} minus_A(x1) = x1 -_A(x1,x2) = max{x1 + 5, x2 + 3} *_A(x1,x2) = max{x1, x2 + 1} precedence: D# = + = pow = ln = div = minus = - = * partial status: pi(D#) = [1] pi(+) = [1, 2] pi(pow) = [1, 2] pi(ln) = [1] pi(div) = [1, 2] pi(minus) = [1] pi(-) = [1, 2] pi(*) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(pow(x,y)) -> D#(x) p3: D#(ln(x)) -> D#(x) p4: D#(div(x,y)) -> D#(y) p5: D#(div(x,y)) -> D#(x) p6: D#(minus(x)) -> D#(x) p7: D#(-(x,y)) -> D#(y) p8: D#(-(x,y)) -> D#(x) p9: D#(*(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(*(x,y)) -> D#(x) p3: D#(-(x,y)) -> D#(x) p4: D#(-(x,y)) -> D#(y) p5: D#(minus(x)) -> D#(x) p6: D#(div(x,y)) -> D#(x) p7: D#(div(x,y)) -> D#(y) p8: D#(ln(x)) -> D#(x) p9: D#(pow(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = max{4, x1 + 3} pow_A(x1,x2) = max{x1, x2 + 2} *_A(x1,x2) = max{x1, x2} -_A(x1,x2) = max{x1 + 1, x2} minus_A(x1) = x1 div_A(x1,x2) = max{1, x1, x2} ln_A(x1) = x1 precedence: D# = pow = * = - = minus = div = ln partial status: pi(D#) = [] pi(pow) = [2] pi(*) = [2] pi(-) = [2] pi(minus) = [1] pi(div) = [2] pi(ln) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(*(x,y)) -> D#(x) p2: D#(-(x,y)) -> D#(x) p3: D#(-(x,y)) -> D#(y) p4: D#(minus(x)) -> D#(x) p5: D#(div(x,y)) -> D#(x) p6: D#(div(x,y)) -> D#(y) p7: D#(ln(x)) -> D#(x) p8: D#(pow(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(*(x,y)) -> D#(x) p2: D#(pow(x,y)) -> D#(x) p3: D#(ln(x)) -> D#(x) p4: D#(div(x,y)) -> D#(y) p5: D#(div(x,y)) -> D#(x) p6: D#(minus(x)) -> D#(x) p7: D#(-(x,y)) -> D#(y) p8: D#(-(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = x1 + 2 *_A(x1,x2) = max{x1, x2} pow_A(x1,x2) = max{x1, x2} ln_A(x1) = x1 div_A(x1,x2) = max{x1, x2} minus_A(x1) = x1 + 1 -_A(x1,x2) = max{x1, x2} precedence: D# > * = pow = ln = div = minus = - partial status: pi(D#) = [1] pi(*) = [1, 2] pi(pow) = [1, 2] pi(ln) = [1] pi(div) = [1, 2] pi(minus) = [1] pi(-) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(x) p2: D#(ln(x)) -> D#(x) p3: D#(div(x,y)) -> D#(y) p4: D#(div(x,y)) -> D#(x) p5: D#(minus(x)) -> D#(x) p6: D#(-(x,y)) -> D#(y) p7: D#(-(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(x) p2: D#(-(x,y)) -> D#(x) p3: D#(-(x,y)) -> D#(y) p4: D#(minus(x)) -> D#(x) p5: D#(div(x,y)) -> D#(x) p6: D#(div(x,y)) -> D#(y) p7: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = x1 + 3 pow_A(x1,x2) = max{x1, x2} -_A(x1,x2) = max{x1 + 2, x2 + 2} minus_A(x1) = x1 div_A(x1,x2) = max{x1, x2} ln_A(x1) = x1 precedence: D# = pow = - = minus = div = ln partial status: pi(D#) = [1] pi(pow) = [1, 2] pi(-) = [1, 2] pi(minus) = [1] pi(div) = [1, 2] pi(ln) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(-(x,y)) -> D#(x) p2: D#(-(x,y)) -> D#(y) p3: D#(minus(x)) -> D#(x) p4: D#(div(x,y)) -> D#(x) p5: D#(div(x,y)) -> D#(y) p6: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(-(x,y)) -> D#(x) p2: D#(ln(x)) -> D#(x) p3: D#(div(x,y)) -> D#(y) p4: D#(div(x,y)) -> D#(x) p5: D#(minus(x)) -> D#(x) p6: D#(-(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = max{2, x1 - 3} -_A(x1,x2) = max{x1 + 2, x2 + 2} ln_A(x1) = x1 + 1 div_A(x1,x2) = max{x1 + 6, x2 + 2} minus_A(x1) = x1 precedence: D# = - = ln = div = minus partial status: pi(D#) = [] pi(-) = [2] pi(ln) = [1] pi(div) = [2] pi(minus) = [1] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(-(x,y)) -> D#(x) p2: D#(ln(x)) -> D#(x) p3: D#(div(x,y)) -> D#(x) p4: D#(minus(x)) -> D#(x) p5: D#(-(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(-(x,y)) -> D#(x) p2: D#(-(x,y)) -> D#(y) p3: D#(minus(x)) -> D#(x) p4: D#(div(x,y)) -> D#(x) p5: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = x1 + 2 -_A(x1,x2) = max{x1, x2} minus_A(x1) = x1 + 2 div_A(x1,x2) = max{x1, x2} ln_A(x1) = x1 precedence: D# = - = minus = div = ln partial status: pi(D#) = [1] pi(-) = [1, 2] pi(minus) = [1] pi(div) = [1, 2] pi(ln) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(-(x,y)) -> D#(y) p2: D#(minus(x)) -> D#(x) p3: D#(div(x,y)) -> D#(x) p4: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(-(x,y)) -> D#(y) p2: D#(ln(x)) -> D#(x) p3: D#(div(x,y)) -> D#(x) p4: D#(minus(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = x1 + 2 -_A(x1,x2) = x2 ln_A(x1) = x1 div_A(x1,x2) = max{x1, x2} minus_A(x1) = x1 + 1 precedence: D# = - = ln = div = minus partial status: pi(D#) = [1] pi(-) = [2] pi(ln) = [1] pi(div) = [1, 2] pi(minus) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(ln(x)) -> D#(x) p2: D#(div(x,y)) -> D#(x) p3: D#(minus(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(ln(x)) -> D#(x) p2: D#(minus(x)) -> D#(x) p3: D#(div(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = x1 + 2 ln_A(x1) = x1 minus_A(x1) = x1 div_A(x1,x2) = max{x1 + 1, x2 + 1} precedence: D# = ln = minus = div partial status: pi(D#) = [1] pi(ln) = [1] pi(minus) = [1] pi(div) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(minus(x)) -> D#(x) p2: D#(div(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(minus(x)) -> D#(x) p2: D#(div(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = x1 + 1 minus_A(x1) = x1 div_A(x1,x2) = max{x1, x2} precedence: D# = minus = div partial status: pi(D#) = [1] pi(minus) = [1] pi(div) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(div(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(div(x,y)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = x1 + 3 div_A(x1,x2) = max{x1 + 1, x2} precedence: D# = div partial status: pi(D#) = [] pi(div) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.