YES We show the termination of the TRS R: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(|:|(x,y),z) -> |:|#(x,|:|(y,z)) p2: |:|#(|:|(x,y),z) -> |:|#(y,z) p3: |:|#(+(x,y),z) -> |:|#(x,z) p4: |:|#(+(x,y),z) -> |:|#(y,z) p5: |:|#(z,+(x,f(y))) -> |:|#(g(z,y),+(x,a())) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(|:|(x,y),z) -> |:|#(x,|:|(y,z)) p2: |:|#(+(x,y),z) -> |:|#(y,z) p3: |:|#(+(x,y),z) -> |:|#(x,z) p4: |:|#(|:|(x,y),z) -> |:|#(y,z) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: |:|#_A(x1,x2) = x1 + 2 |:|_A(x1,x2) = max{x1 + 3, x2} +_A(x1,x2) = max{3, x1, x2} f_A(x1) = x1 + 5 g_A(x1,x2) = x2 + 2 a_A = 4 precedence: |:|# = |:| = + = f = g = a partial status: pi(|:|#) = [] pi(|:|) = [] pi(+) = [] pi(f) = [1] pi(g) = [] pi(a) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(+(x,y),z) -> |:|#(y,z) p2: |:|#(+(x,y),z) -> |:|#(x,z) p3: |:|#(|:|(x,y),z) -> |:|#(y,z) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(+(x,y),z) -> |:|#(y,z) p2: |:|#(|:|(x,y),z) -> |:|#(y,z) p3: |:|#(+(x,y),z) -> |:|#(x,z) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: |:|#_A(x1,x2) = max{0, x1 - 2} +_A(x1,x2) = max{3, x1, x2 + 1} |:|_A(x1,x2) = x2 precedence: |:|# = + = |:| partial status: pi(|:|#) = [] pi(+) = [2] pi(|:|) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(|:|(x,y),z) -> |:|#(y,z) p2: |:|#(+(x,y),z) -> |:|#(x,z) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(|:|(x,y),z) -> |:|#(y,z) p2: |:|#(+(x,y),z) -> |:|#(x,z) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: |:|#_A(x1,x2) = max{2, x1 + 1, x2 + 1} |:|_A(x1,x2) = x2 +_A(x1,x2) = max{x1 + 1, x2} precedence: |:|# = |:| = + partial status: pi(|:|#) = [1] pi(|:|) = [2] pi(+) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(+(x,y),z) -> |:|#(x,z) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(+(x,y),z) -> |:|#(x,z) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: |:|#_A(x1,x2) = max{x1, x2 + 1} +_A(x1,x2) = max{x1 + 1, x2} precedence: |:|# = + partial status: pi(|:|#) = [1] pi(+) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.