YES We show the termination of the TRS R: f(a,empty()) -> g(a,empty()) f(a,cons(x,k)) -> f(cons(x,a),k) g(empty(),d) -> d g(cons(x,k),d) -> g(k,cons(x,d)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a,empty()) -> g#(a,empty()) p2: f#(a,cons(x,k)) -> f#(cons(x,a),k) p3: g#(cons(x,k),d) -> g#(k,cons(x,d)) and R consists of: r1: f(a,empty()) -> g(a,empty()) r2: f(a,cons(x,k)) -> f(cons(x,a),k) r3: g(empty(),d) -> d r4: g(cons(x,k),d) -> g(k,cons(x,d)) The estimated dependency graph contains the following SCCs: {p2} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a,cons(x,k)) -> f#(cons(x,a),k) and R consists of: r1: f(a,empty()) -> g(a,empty()) r2: f(a,cons(x,k)) -> f(cons(x,a),k) r3: g(empty(),d) -> d r4: g(cons(x,k),d) -> g(k,cons(x,d)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1,x2) = max{0, x2 - 2} cons_A(x1,x2) = max{3, x1 + 1, x2 + 1} precedence: f# = cons partial status: pi(f#) = [] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(cons(x,k),d) -> g#(k,cons(x,d)) and R consists of: r1: f(a,empty()) -> g(a,empty()) r2: f(a,cons(x,k)) -> f(cons(x,a),k) r3: g(empty(),d) -> d r4: g(cons(x,k),d) -> g(k,cons(x,d)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: g#_A(x1,x2) = max{0, x1 - 2} cons_A(x1,x2) = max{3, x1 + 1, x2 + 1} precedence: g# = cons partial status: pi(g#) = [] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.