YES We show the termination of the TRS R: minus(X,s(Y)) -> pred(minus(X,Y)) minus(X,|0|()) -> X pred(s(X)) -> X le(s(X),s(Y)) -> le(X,Y) le(s(X),|0|()) -> false() le(|0|(),Y) -> true() gcd(|0|(),Y) -> |0|() gcd(s(X),|0|()) -> s(X) gcd(s(X),s(Y)) -> if(le(Y,X),s(X),s(Y)) if(true(),s(X),s(Y)) -> gcd(minus(X,Y),s(Y)) if(false(),s(X),s(Y)) -> gcd(minus(Y,X),s(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus#(X,s(Y)) -> pred#(minus(X,Y)) p2: minus#(X,s(Y)) -> minus#(X,Y) p3: le#(s(X),s(Y)) -> le#(X,Y) p4: gcd#(s(X),s(Y)) -> if#(le(Y,X),s(X),s(Y)) p5: gcd#(s(X),s(Y)) -> le#(Y,X) p6: if#(true(),s(X),s(Y)) -> gcd#(minus(X,Y),s(Y)) p7: if#(true(),s(X),s(Y)) -> minus#(X,Y) p8: if#(false(),s(X),s(Y)) -> gcd#(minus(Y,X),s(X)) p9: if#(false(),s(X),s(Y)) -> minus#(Y,X) and R consists of: r1: minus(X,s(Y)) -> pred(minus(X,Y)) r2: minus(X,|0|()) -> X r3: pred(s(X)) -> X r4: le(s(X),s(Y)) -> le(X,Y) r5: le(s(X),|0|()) -> false() r6: le(|0|(),Y) -> true() r7: gcd(|0|(),Y) -> |0|() r8: gcd(s(X),|0|()) -> s(X) r9: gcd(s(X),s(Y)) -> if(le(Y,X),s(X),s(Y)) r10: if(true(),s(X),s(Y)) -> gcd(minus(X,Y),s(Y)) r11: if(false(),s(X),s(Y)) -> gcd(minus(Y,X),s(X)) The estimated dependency graph contains the following SCCs: {p4, p6, p8} {p2} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: gcd#(s(X),s(Y)) -> if#(le(Y,X),s(X),s(Y)) p2: if#(false(),s(X),s(Y)) -> gcd#(minus(Y,X),s(X)) p3: if#(true(),s(X),s(Y)) -> gcd#(minus(X,Y),s(Y)) and R consists of: r1: minus(X,s(Y)) -> pred(minus(X,Y)) r2: minus(X,|0|()) -> X r3: pred(s(X)) -> X r4: le(s(X),s(Y)) -> le(X,Y) r5: le(s(X),|0|()) -> false() r6: le(|0|(),Y) -> true() r7: gcd(|0|(),Y) -> |0|() r8: gcd(s(X),|0|()) -> s(X) r9: gcd(s(X),s(Y)) -> if(le(Y,X),s(X),s(Y)) r10: if(true(),s(X),s(Y)) -> gcd(minus(X,Y),s(Y)) r11: if(false(),s(X),s(Y)) -> gcd(minus(Y,X),s(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: gcd#_A(x1,x2) = max{2, x1, x2 - 4} s_A(x1) = x1 + 7 if#_A(x1,x2,x3) = max{0, x1 - 2, x2 - 1, x3 - 4} le_A(x1,x2) = x1 + 5 false_A = 6 minus_A(x1,x2) = max{x1 + 2, x2 + 3} true_A = 2 pred_A(x1) = max{10, x1} |0|_A = 7 precedence: false > gcd# = if# = le = minus = pred = |0| > s = true partial status: pi(gcd#) = [] pi(s) = [1] pi(if#) = [] pi(le) = [1] pi(false) = [] pi(minus) = [1, 2] pi(true) = [] pi(pred) = [] pi(|0|) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: gcd#(s(X),s(Y)) -> if#(le(Y,X),s(X),s(Y)) p2: if#(true(),s(X),s(Y)) -> gcd#(minus(X,Y),s(Y)) and R consists of: r1: minus(X,s(Y)) -> pred(minus(X,Y)) r2: minus(X,|0|()) -> X r3: pred(s(X)) -> X r4: le(s(X),s(Y)) -> le(X,Y) r5: le(s(X),|0|()) -> false() r6: le(|0|(),Y) -> true() r7: gcd(|0|(),Y) -> |0|() r8: gcd(s(X),|0|()) -> s(X) r9: gcd(s(X),s(Y)) -> if(le(Y,X),s(X),s(Y)) r10: if(true(),s(X),s(Y)) -> gcd(minus(X,Y),s(Y)) r11: if(false(),s(X),s(Y)) -> gcd(minus(Y,X),s(X)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: gcd#(s(X),s(Y)) -> if#(le(Y,X),s(X),s(Y)) p2: if#(true(),s(X),s(Y)) -> gcd#(minus(X,Y),s(Y)) and R consists of: r1: minus(X,s(Y)) -> pred(minus(X,Y)) r2: minus(X,|0|()) -> X r3: pred(s(X)) -> X r4: le(s(X),s(Y)) -> le(X,Y) r5: le(s(X),|0|()) -> false() r6: le(|0|(),Y) -> true() r7: gcd(|0|(),Y) -> |0|() r8: gcd(s(X),|0|()) -> s(X) r9: gcd(s(X),s(Y)) -> if(le(Y,X),s(X),s(Y)) r10: if(true(),s(X),s(Y)) -> gcd(minus(X,Y),s(Y)) r11: if(false(),s(X),s(Y)) -> gcd(minus(Y,X),s(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: gcd#_A(x1,x2) = max{0, x1 - 5} s_A(x1) = x1 + 15 if#_A(x1,x2,x3) = max{1, x2 - 9} le_A(x1,x2) = max{x1 + 14, x2 + 14} true_A = 13 minus_A(x1,x2) = x1 + 11 pred_A(x1) = max{11, x1} |0|_A = 12 false_A = 13 precedence: gcd# = s = if# = le = true = minus = pred = |0| = false partial status: pi(gcd#) = [] pi(s) = [1] pi(if#) = [] pi(le) = [2] pi(true) = [] pi(minus) = [] pi(pred) = [] pi(|0|) = [] pi(false) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(true(),s(X),s(Y)) -> gcd#(minus(X,Y),s(Y)) and R consists of: r1: minus(X,s(Y)) -> pred(minus(X,Y)) r2: minus(X,|0|()) -> X r3: pred(s(X)) -> X r4: le(s(X),s(Y)) -> le(X,Y) r5: le(s(X),|0|()) -> false() r6: le(|0|(),Y) -> true() r7: gcd(|0|(),Y) -> |0|() r8: gcd(s(X),|0|()) -> s(X) r9: gcd(s(X),s(Y)) -> if(le(Y,X),s(X),s(Y)) r10: if(true(),s(X),s(Y)) -> gcd(minus(X,Y),s(Y)) r11: if(false(),s(X),s(Y)) -> gcd(minus(Y,X),s(X)) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(X,s(Y)) -> minus#(X,Y) and R consists of: r1: minus(X,s(Y)) -> pred(minus(X,Y)) r2: minus(X,|0|()) -> X r3: pred(s(X)) -> X r4: le(s(X),s(Y)) -> le(X,Y) r5: le(s(X),|0|()) -> false() r6: le(|0|(),Y) -> true() r7: gcd(|0|(),Y) -> |0|() r8: gcd(s(X),|0|()) -> s(X) r9: gcd(s(X),s(Y)) -> if(le(Y,X),s(X),s(Y)) r10: if(true(),s(X),s(Y)) -> gcd(minus(X,Y),s(Y)) r11: if(false(),s(X),s(Y)) -> gcd(minus(Y,X),s(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: minus#_A(x1,x2) = max{1, x1, x2} s_A(x1) = x1 + 1 precedence: minus# = s partial status: pi(minus#) = [1, 2] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(X),s(Y)) -> le#(X,Y) and R consists of: r1: minus(X,s(Y)) -> pred(minus(X,Y)) r2: minus(X,|0|()) -> X r3: pred(s(X)) -> X r4: le(s(X),s(Y)) -> le(X,Y) r5: le(s(X),|0|()) -> false() r6: le(|0|(),Y) -> true() r7: gcd(|0|(),Y) -> |0|() r8: gcd(s(X),|0|()) -> s(X) r9: gcd(s(X),s(Y)) -> if(le(Y,X),s(X),s(Y)) r10: if(true(),s(X),s(Y)) -> gcd(minus(X,Y),s(Y)) r11: if(false(),s(X),s(Y)) -> gcd(minus(Y,X),s(X)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: le#_A(x1,x2) = max{0, x1 - 2, x2 - 2} s_A(x1) = max{3, x1 + 1} precedence: le# = s partial status: pi(le#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.