YES We show the termination of the TRS R: and(false(),false()) -> false() and(true(),false()) -> false() and(false(),true()) -> false() and(true(),true()) -> true() eq(nil(),nil()) -> true() eq(cons(T,L),nil()) -> false() eq(nil(),cons(T,L)) -> false() eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) eq(var(L),var(Lp)) -> eq(L,Lp) eq(var(L),apply(T,S)) -> false() eq(var(L),lambda(X,T)) -> false() eq(apply(T,S),var(L)) -> false() eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) eq(apply(T,S),lambda(X,Tp)) -> false() eq(lambda(X,T),var(L)) -> false() eq(lambda(X,T),apply(Tp,Sp)) -> false() eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) if(true(),var(K),var(L)) -> var(K) if(false(),var(K),var(L)) -> var(L) ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> and#(eq(T,Tp),eq(L,Lp)) p2: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(T,Tp) p3: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p4: eq#(var(L),var(Lp)) -> eq#(L,Lp) p5: eq#(apply(T,S),apply(Tp,Sp)) -> and#(eq(T,Tp),eq(S,Sp)) p6: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p7: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p8: eq#(lambda(X,T),lambda(Xp,Tp)) -> and#(eq(T,Tp),eq(X,Xp)) p9: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) p10: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) p11: ren#(var(L),var(K),var(Lp)) -> if#(eq(L,Lp),var(K),var(Lp)) p12: ren#(var(L),var(K),var(Lp)) -> eq#(L,Lp) p13: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) p14: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) p15: ren#(X,Y,lambda(Z,T)) -> ren#(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T)) p16: ren#(X,Y,lambda(Z,T)) -> ren#(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p13, p14, p15, p16} {p2, p3, p4, p6, p7, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,lambda(Z,T)) -> ren#(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T) p2: ren#(X,Y,lambda(Z,T)) -> ren#(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T)) p3: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) p4: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: ren#_A(x1,x2,x3) = max{102, x2 + 23, x3 + 74} lambda_A(x1,x2) = x2 + 97 var_A(x1) = 3 cons_A(x1,x2) = max{12, x2 + 3} nil_A = 1 ren_A(x1,x2,x3) = x3 apply_A(x1,x2) = max{x1 + 31, x2 + 31} and_A(x1,x2) = 142 false_A = 30 true_A = 46 eq_A(x1,x2) = 142 if_A(x1,x2,x3) = max{3, x2, x3 - 5} precedence: nil > ren# = lambda = var = cons = ren = apply = and = false = true = eq = if partial status: pi(ren#) = [2] pi(lambda) = [] pi(var) = [] pi(cons) = [2] pi(nil) = [] pi(ren) = [] pi(apply) = [] pi(and) = [] pi(false) = [] pi(true) = [] pi(eq) = [] pi(if) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,lambda(Z,T)) -> ren#(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T)) p2: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) p3: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,lambda(Z,T)) -> ren#(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T)) p2: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) p3: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: ren#_A(x1,x2,x3) = max{12, x3 + 11} lambda_A(x1,x2) = max{x1 + 39, x2 + 114} ren_A(x1,x2,x3) = x3 var_A(x1) = 10 cons_A(x1,x2) = max{x1 + 13, x2 + 5} nil_A = 23 apply_A(x1,x2) = max{2, x1 + 1, x2 + 1} and_A(x1,x2) = max{1, x1, x2} false_A = 0 true_A = 2 eq_A(x1,x2) = 10 if_A(x1,x2,x3) = max{10, x2, x3 - 37} precedence: ren# = lambda = ren > cons > var = nil = apply = and = false = true = eq = if partial status: pi(ren#) = [] pi(lambda) = [] pi(ren) = [] pi(var) = [] pi(cons) = [2] pi(nil) = [] pi(apply) = [1] pi(and) = [] pi(false) = [] pi(true) = [] pi(eq) = [] pi(if) = [2] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,lambda(Z,T)) -> ren#(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T)) p2: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,lambda(Z,T)) -> ren#(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T)) p2: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: ren#_A(x1,x2,x3) = max{3, x3 + 2} lambda_A(x1,x2) = max{x1 + 65, x2 + 90} ren_A(x1,x2,x3) = x3 var_A(x1) = 0 cons_A(x1,x2) = max{29, x1, x2 + 13} nil_A = 53 apply_A(x1,x2) = max{x1 + 1, x2} and_A(x1,x2) = max{1, x1} false_A = 0 true_A = 2 eq_A(x1,x2) = 2 if_A(x1,x2,x3) = max{x1 - 2, x2, x3 - 1} precedence: lambda = ren > ren# > apply > var = cons = nil = and = false = true = eq = if partial status: pi(ren#) = [3] pi(lambda) = [] pi(ren) = [] pi(var) = [] pi(cons) = [2] pi(nil) = [] pi(apply) = [] pi(and) = [] pi(false) = [] pi(true) = [] pi(eq) = [] pi(if) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,lambda(Z,T)) -> ren#(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T)) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,lambda(Z,T)) -> ren#(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T)) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: ren#_A(x1,x2,x3) = x3 + 33 lambda_A(x1,x2) = max{x1 + 120, x2 + 85} ren_A(x1,x2,x3) = max{35, x3} var_A(x1) = 0 cons_A(x1,x2) = max{x1, x2 + 9} nil_A = 57 and_A(x1,x2) = max{83, x1 - 2, x2} false_A = 84 true_A = 87 eq_A(x1,x2) = 248 apply_A(x1,x2) = max{72, x1 - 1, x2 + 37} if_A(x1,x2,x3) = max{x2, x3 + 35} precedence: lambda = ren = eq > ren# > var = cons = nil = and = false = true = apply = if partial status: pi(ren#) = [3] pi(lambda) = [] pi(ren) = [] pi(var) = [] pi(cons) = [2] pi(nil) = [] pi(and) = [] pi(false) = [] pi(true) = [] pi(eq) = [] pi(apply) = [2] pi(if) = [3] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(T,Tp) p2: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) p3: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) p4: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p5: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p6: eq#(var(L),var(Lp)) -> eq#(L,Lp) p7: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{2, x1 + 1, x2 - 2} cons_A(x1,x2) = max{x1 + 1, x2} lambda_A(x1,x2) = max{x1 + 1, x2} apply_A(x1,x2) = max{x1 + 1, x2} var_A(x1) = max{1, x1} precedence: eq# = cons = lambda = apply = var partial status: pi(eq#) = [1] pi(cons) = [2] pi(lambda) = [2] pi(apply) = [2] pi(var) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) p2: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) p3: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p4: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p5: eq#(var(L),var(Lp)) -> eq#(L,Lp) p6: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) p2: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p3: eq#(var(L),var(Lp)) -> eq#(L,Lp) p4: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p5: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p6: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{x1 - 1, x2 + 1} lambda_A(x1,x2) = max{x1, x2} cons_A(x1,x2) = x2 var_A(x1) = x1 apply_A(x1,x2) = max{x1, x2} precedence: eq# = lambda = cons = var = apply partial status: pi(eq#) = [2] pi(lambda) = [1, 2] pi(cons) = [2] pi(var) = [1] pi(apply) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p2: eq#(var(L),var(Lp)) -> eq#(L,Lp) p3: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p4: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p5: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p2: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) p3: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p4: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p5: eq#(var(L),var(Lp)) -> eq#(L,Lp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{0, x2 - 3} cons_A(x1,x2) = max{x1 + 4, x2 + 4} lambda_A(x1,x2) = max{3, x1 - 1, x2} apply_A(x1,x2) = max{x1 + 4, x2 + 4} var_A(x1) = max{4, x1 + 2} precedence: eq# = cons = lambda = apply = var partial status: pi(eq#) = [] pi(cons) = [2] pi(lambda) = [2] pi(apply) = [2] pi(var) = [1] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p2: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) p3: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p4: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p2: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p3: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p4: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{0, x1 - 3, x2 - 1} cons_A(x1,x2) = max{x1, x2} apply_A(x1,x2) = max{4, x1, x2 + 2} lambda_A(x1,x2) = max{1, x2} precedence: eq# = cons = apply = lambda partial status: pi(eq#) = [] pi(cons) = [1, 2] pi(apply) = [2] pi(lambda) = [2] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p2: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p3: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p2: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) p3: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{0, x2 - 3} cons_A(x1,x2) = max{3, x2} lambda_A(x1,x2) = max{3, x2} apply_A(x1,x2) = max{x1 + 1, x2 + 4} precedence: eq# = cons = lambda = apply partial status: pi(eq#) = [] pi(cons) = [2] pi(lambda) = [2] pi(apply) = [1] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p2: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p2: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{0, x1 - 3} cons_A(x1,x2) = max{x1 + 3, x2} lambda_A(x1,x2) = max{x1 + 4, x2 + 1} precedence: eq# = cons = lambda partial status: pi(eq#) = [] pi(cons) = [1] pi(lambda) = [2] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{0, x1 - 2, x2 - 2} cons_A(x1,x2) = max{x1 + 3, x2 + 1} precedence: eq# = cons partial status: pi(eq#) = [] pi(cons) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.