YES We show the termination of the TRS R: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) u21(ackout(X),Y) -> u22(ackin(Y,X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> u21#(ackin(s(X),Y),X) p2: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) p3: u21#(ackout(X),Y) -> ackin#(Y,X) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> u21#(ackin(s(X),Y),X) p2: u21#(ackout(X),Y) -> ackin#(Y,X) p3: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The set of usable rules consists of r1, r2 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: ackin#_A(x1,x2) = max{4, x1 + 1} s_A(x1) = max{13, x1 + 11} u21#_A(x1,x2) = max{11, x2 + 5} ackin_A(x1,x2) = max{x1 + 13, x2 + 16} ackout_A(x1) = x1 + 7 u21_A(x1,x2) = max{x1, x2 + 2} u22_A(x1) = 1 precedence: ackin# = s = u21# = ackin = ackout = u21 = u22 partial status: pi(ackin#) = [] pi(s) = [1] pi(u21#) = [] pi(ackin) = [1, 2] pi(ackout) = [1] pi(u21) = [] pi(u22) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> u21#(ackin(s(X),Y),X) p2: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: ackin#_A(x1,x2) = max{0, x2 - 2} s_A(x1) = max{4, x1 + 1} precedence: ackin# = s partial status: pi(ackin#) = [] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.