YES We show the termination of the TRS R: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) din(der(times(X,Y))) -> u31(din(der(X)),X,Y) u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) din(der(der(X))) -> u41(din(der(X)),X) u41(dout(DX),X) -> u42(din(der(DX)),X,DX) u42(dout(DDX),X,DX) -> dout(DDX) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: din#(der(plus(X,Y))) -> din#(der(X)) p3: u21#(dout(DX),X,Y) -> u22#(din(der(Y)),X,Y,DX) p4: u21#(dout(DX),X,Y) -> din#(der(Y)) p5: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p6: din#(der(times(X,Y))) -> din#(der(X)) p7: u31#(dout(DX),X,Y) -> u32#(din(der(Y)),X,Y,DX) p8: u31#(dout(DX),X,Y) -> din#(der(Y)) p9: din#(der(der(X))) -> u41#(din(der(X)),X) p10: din#(der(der(X))) -> din#(der(X)) p11: u41#(dout(DX),X) -> u42#(din(der(DX)),X,DX) p12: u41#(dout(DX),X) -> din#(der(DX)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1, p2, p4, p5, p6, p8, p9, p10, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: u21#(dout(DX),X,Y) -> din#(der(Y)) p3: din#(der(der(X))) -> din#(der(X)) p4: din#(der(der(X))) -> u41#(din(der(X)),X) p5: u41#(dout(DX),X) -> din#(der(DX)) p6: din#(der(times(X,Y))) -> din#(der(X)) p7: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p8: u31#(dout(DX),X,Y) -> din#(der(Y)) p9: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: din#_A(x1) = max{0, x1 - 2} der_A(x1) = x1 + 89 plus_A(x1,x2) = max{28, x1, x2 + 16} u21#_A(x1,x2,x3) = max{x1 - 115, x2 + 48, x3 + 89} din_A(x1) = max{114, x1 + 88} dout_A(x1) = max{129, x1 + 117} u41#_A(x1,x2) = max{x1 - 24, x2 + 175} times_A(x1,x2) = max{x1 + 90, x2 + 48} u31#_A(x1,x2,x3) = max{x1 - 23, x2 + 176, x3 + 88} u22_A(x1,x2,x3,x4) = max{x1 + 16, x2 + 133, x3 + 144, x4 + 117} u32_A(x1,x2,x3,x4) = max{x1 + 48, x2 + 208, x3 + 224, x4 + 182} u42_A(x1,x2,x3) = max{204, x1 + 13, x2 + 130, x3 - 1} u21_A(x1,x2,x3) = max{x1, x2 + 134, x3 + 193} u31_A(x1,x2,x3) = max{x1 + 67, x2 + 267, x3 + 225} u41_A(x1,x2) = max{x1 + 74, x2 + 265} precedence: din# = der = plus = u21# = din = dout = u41# = times = u31# = u22 = u32 = u42 = u21 = u31 = u41 partial status: pi(din#) = [] pi(der) = [1] pi(plus) = [1, 2] pi(u21#) = [] pi(din) = [1] pi(dout) = [] pi(u41#) = [] pi(times) = [2] pi(u31#) = [] pi(u22) = [] pi(u32) = [] pi(u42) = [2] pi(u21) = [] pi(u31) = [2] pi(u41) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: u21#(dout(DX),X,Y) -> din#(der(Y)) p3: din#(der(der(X))) -> din#(der(X)) p4: din#(der(der(X))) -> u41#(din(der(X)),X) p5: u41#(dout(DX),X) -> din#(der(DX)) p6: din#(der(times(X,Y))) -> din#(der(X)) p7: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p8: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: u21#(dout(DX),X,Y) -> din#(der(Y)) p3: din#(der(plus(X,Y))) -> din#(der(X)) p4: din#(der(times(X,Y))) -> din#(der(X)) p5: din#(der(der(X))) -> u41#(din(der(X)),X) p6: u41#(dout(DX),X) -> din#(der(DX)) p7: din#(der(der(X))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: din#_A(x1) = 58 der_A(x1) = max{17, x1 + 7} plus_A(x1,x2) = max{38, x1, x2 + 21} u21#_A(x1,x2,x3) = x1 + 3 din_A(x1) = 15 dout_A(x1) = x1 + 58 times_A(x1,x2) = 15 u41#_A(x1,x2) = max{57, x1} u22_A(x1,x2,x3,x4) = max{x1 + 38, x4 + 58} u32_A(x1,x2,x3,x4) = max{x1 + 41, x4 + 39} u42_A(x1,x2,x3) = x1 + 1 u21_A(x1,x2,x3) = max{15, x1} u31_A(x1,x2,x3) = max{15, x1} u41_A(x1,x2) = max{13, x1} precedence: der > plus > din = u41# = u32 = u31 > din# = u21# = dout = times = u22 = u42 = u21 = u41 partial status: pi(din#) = [] pi(der) = [] pi(plus) = [] pi(u21#) = [] pi(din) = [] pi(dout) = [] pi(times) = [] pi(u41#) = [1] pi(u22) = [] pi(u32) = [4] pi(u42) = [] pi(u21) = [] pi(u31) = [] pi(u41) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: u21#(dout(DX),X,Y) -> din#(der(Y)) p3: din#(der(plus(X,Y))) -> din#(der(X)) p4: din#(der(times(X,Y))) -> din#(der(X)) p5: u41#(dout(DX),X) -> din#(der(DX)) p6: din#(der(der(X))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: u21#(dout(DX),X,Y) -> din#(der(Y)) p3: din#(der(der(X))) -> din#(der(X)) p4: din#(der(times(X,Y))) -> din#(der(X)) p5: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: din#_A(x1) = max{0, x1 - 8} der_A(x1) = max{8, x1 + 3} plus_A(x1,x2) = max{x1 + 5, x2 + 10} u21#_A(x1,x2,x3) = max{x1 - 63, x2, x3} din_A(x1) = x1 + 60 dout_A(x1) = 63 times_A(x1,x2) = max{24, x1 + 23, x2 + 17} u22_A(x1,x2,x3,x4) = max{x1 + 5, x3 + 73} u32_A(x1,x2,x3,x4) = max{x1 + 10, x2 + 86, x3 + 79} u42_A(x1,x2,x3) = 64 u21_A(x1,x2,x3) = max{x1 + 5, x3 + 73} u31_A(x1,x2,x3) = max{x1 + 17, x2 + 86, x3 + 79} u41_A(x1,x2) = max{71, x1 + 2} precedence: der > din > din# = plus = u21# = dout = times = u22 = u32 = u42 = u21 = u31 = u41 partial status: pi(din#) = [] pi(der) = [] pi(plus) = [] pi(u21#) = [] pi(din) = [1] pi(dout) = [] pi(times) = [2] pi(u22) = [] pi(u32) = [3] pi(u42) = [] pi(u21) = [] pi(u31) = [3] pi(u41) = [1] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: u21#(dout(DX),X,Y) -> din#(der(Y)) p3: din#(der(der(X))) -> din#(der(X)) p4: din#(der(times(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: u21#(dout(DX),X,Y) -> din#(der(Y)) p3: din#(der(times(X,Y))) -> din#(der(X)) p4: din#(der(der(X))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: din#_A(x1) = max{19, x1 - 154} der_A(x1) = x1 + 131 plus_A(x1,x2) = max{x1 + 146, x2 + 49} u21#_A(x1,x2,x3) = max{x1 - 131, x2 + 19, x3 + 18} din_A(x1) = max{145, x1 + 10} dout_A(x1) = 149 times_A(x1,x2) = max{x1 + 132, x2 + 68} u22_A(x1,x2,x3,x4) = max{x1 + 39, x2 + 277, x3 + 179} u32_A(x1,x2,x3,x4) = max{x1 + 68, x2 + 272, x3 + 180} u42_A(x1,x2,x3) = x2 + 272 u21_A(x1,x2,x3) = max{x1 + 129, x2 + 277, x3 + 180} u31_A(x1,x2,x3) = max{x1 + 119, x2 + 273, x3 + 209} u41_A(x1,x2) = max{x1 + 127, x2 + 272} precedence: din# = der = plus = u21# = din = dout = times = u22 = u32 = u42 = u21 = u31 = u41 partial status: pi(din#) = [] pi(der) = [1] pi(plus) = [] pi(u21#) = [3] pi(din) = [1] pi(dout) = [] pi(times) = [2] pi(u22) = [] pi(u32) = [] pi(u42) = [] pi(u21) = [1, 2, 3] pi(u31) = [] pi(u41) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: u21#(dout(DX),X,Y) -> din#(der(Y)) p2: din#(der(times(X,Y))) -> din#(der(X)) p3: din#(der(der(X))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(times(X,Y))) -> din#(der(X)) p2: din#(der(der(X))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: din#_A(x1) = max{11, x1 + 7} der_A(x1) = x1 + 4 times_A(x1,x2) = max{x1 + 10, x2 + 10} precedence: din# = der = times partial status: pi(din#) = [1] pi(der) = [1] pi(times) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(der(X))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(der(X))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: din#_A(x1) = max{1, x1 - 5} der_A(x1) = max{7, x1 + 4} precedence: din# = der partial status: pi(din#) = [] pi(der) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.