YES We show the termination of the TRS R: f(x,y) -> g(x,y) g(h(x),y) -> h(f(x,y)) g(h(x),y) -> h(g(x,y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,y) -> g#(x,y) p2: g#(h(x),y) -> f#(x,y) p3: g#(h(x),y) -> g#(x,y) and R consists of: r1: f(x,y) -> g(x,y) r2: g(h(x),y) -> h(f(x,y)) r3: g(h(x),y) -> h(g(x,y)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,y) -> g#(x,y) p2: g#(h(x),y) -> g#(x,y) p3: g#(h(x),y) -> f#(x,y) and R consists of: r1: f(x,y) -> g(x,y) r2: g(h(x),y) -> h(f(x,y)) r3: g(h(x),y) -> h(g(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: f#_A(x1,x2) = max{x1 + 1, x2 + 1} g#_A(x1,x2) = max{x1 + 1, x2 + 1} h_A(x1) = x1 precedence: f# = g# = h partial status: pi(f#) = [1] pi(g#) = [1] pi(h) = [1] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,y) -> g#(x,y) p2: g#(h(x),y) -> g#(x,y) and R consists of: r1: f(x,y) -> g(x,y) r2: g(h(x),y) -> h(f(x,y)) r3: g(h(x),y) -> h(g(x,y)) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(h(x),y) -> g#(x,y) and R consists of: r1: f(x,y) -> g(x,y) r2: g(h(x),y) -> h(f(x,y)) r3: g(h(x),y) -> h(g(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: g#_A(x1,x2) = max{0, x1 - 2} h_A(x1) = max{3, x1 + 1} precedence: g# = h partial status: pi(g#) = [] pi(h) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.