YES We show the termination of the TRS R: +(x,|0|()) -> x +(x,s(y)) -> s(+(x,y)) +(|0|(),s(y)) -> s(y) s(+(|0|(),y)) -> s(y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(x,s(y)) -> s#(+(x,y)) p2: +#(x,s(y)) -> +#(x,y) p3: s#(+(|0|(),y)) -> s#(y) and R consists of: r1: +(x,|0|()) -> x r2: +(x,s(y)) -> s(+(x,y)) r3: +(|0|(),s(y)) -> s(y) r4: s(+(|0|(),y)) -> s(y) The estimated dependency graph contains the following SCCs: {p2} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(x,s(y)) -> +#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(x,s(y)) -> s(+(x,y)) r3: +(|0|(),s(y)) -> s(y) r4: s(+(|0|(),y)) -> s(y) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: +#_A(x1,x2) = max{1, x1, x2} s_A(x1) = x1 + 1 precedence: +# = s partial status: pi(+#) = [1, 2] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(+(|0|(),y)) -> s#(y) and R consists of: r1: +(x,|0|()) -> x r2: +(x,s(y)) -> s(+(x,y)) r3: +(|0|(),s(y)) -> s(y) r4: s(+(|0|(),y)) -> s(y) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = max{5, x1 + 2} +_A(x1,x2) = x2 + 3 |0|_A = 5 precedence: s# = + = |0| partial status: pi(s#) = [1] pi(+) = [2] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.