YES We show the termination of the TRS R: b(b(y,z),c(a(),a(),a())) -> f(c(z,y,z)) f(b(b(a(),z),c(a(),x,y))) -> z c(y,x,f(z)) -> b(f(b(z,x)),z) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: b#(b(y,z),c(a(),a(),a())) -> f#(c(z,y,z)) p2: b#(b(y,z),c(a(),a(),a())) -> c#(z,y,z) p3: c#(y,x,f(z)) -> b#(f(b(z,x)),z) p4: c#(y,x,f(z)) -> f#(b(z,x)) p5: c#(y,x,f(z)) -> b#(z,x) and R consists of: r1: b(b(y,z),c(a(),a(),a())) -> f(c(z,y,z)) r2: f(b(b(a(),z),c(a(),x,y))) -> z r3: c(y,x,f(z)) -> b(f(b(z,x)),z) The estimated dependency graph contains the following SCCs: {p2, p3, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: b#(b(y,z),c(a(),a(),a())) -> c#(z,y,z) p2: c#(y,x,f(z)) -> b#(z,x) p3: c#(y,x,f(z)) -> b#(f(b(z,x)),z) and R consists of: r1: b(b(y,z),c(a(),a(),a())) -> f(c(z,y,z)) r2: f(b(b(a(),z),c(a(),x,y))) -> z r3: c(y,x,f(z)) -> b(f(b(z,x)),z) The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: b#_A(x1,x2) = max{x1 - 3, x2 + 5} b_A(x1,x2) = max{22, x1 + 14, x2 + 18} c_A(x1,x2,x3) = max{x1 + 38, x2 + 34, x3 + 37} a_A = 0 c#_A(x1,x2,x3) = max{x1 + 15, x2 + 10, x3 + 11} f_A(x1) = max{4, x1 - 6} precedence: b# = b = c = a = c# = f partial status: pi(b#) = [] pi(b) = [2] pi(c) = [3] pi(a) = [] pi(c#) = [] pi(f) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: b#(b(y,z),c(a(),a(),a())) -> c#(z,y,z) p2: c#(y,x,f(z)) -> b#(f(b(z,x)),z) and R consists of: r1: b(b(y,z),c(a(),a(),a())) -> f(c(z,y,z)) r2: f(b(b(a(),z),c(a(),x,y))) -> z r3: c(y,x,f(z)) -> b(f(b(z,x)),z) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: b#(b(y,z),c(a(),a(),a())) -> c#(z,y,z) p2: c#(y,x,f(z)) -> b#(f(b(z,x)),z) and R consists of: r1: b(b(y,z),c(a(),a(),a())) -> f(c(z,y,z)) r2: f(b(b(a(),z),c(a(),x,y))) -> z r3: c(y,x,f(z)) -> b(f(b(z,x)),z) The set of usable rules consists of r1, r2, r3 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: b#_A(x1,x2) = max{10, x1 - 1, x2 - 1} b_A(x1,x2) = max{x1 + 26, x2 + 30} c_A(x1,x2,x3) = max{x1 + 55, x2 + 59, x3 + 53} a_A = 0 c#_A(x1,x2,x3) = max{x1 + 28, x2 + 24, x3 + 28} f_A(x1) = max{84, x1 - 7} precedence: b# = b = c = a = c# = f partial status: pi(b#) = [] pi(b) = [2] pi(c) = [3] pi(a) = [] pi(c#) = [] pi(f) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: b#(b(y,z),c(a(),a(),a())) -> c#(z,y,z) and R consists of: r1: b(b(y,z),c(a(),a(),a())) -> f(c(z,y,z)) r2: f(b(b(a(),z),c(a(),x,y))) -> z r3: c(y,x,f(z)) -> b(f(b(z,x)),z) The estimated dependency graph contains the following SCCs: (no SCCs)