YES We show the termination of the TRS R: D(t()) -> s(h()) D(constant()) -> h() D(b(x,y)) -> b(D(x),D(y)) D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) D(m(x,y)) -> m(D(x),D(y)) D(opp(x)) -> opp(D(x)) D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) D(ln(x)) -> div(D(x),x) D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) b(h(),x) -> x b(x,h()) -> x b(s(x),s(y)) -> s(s(b(x,y))) b(b(x,y),z) -> b(x,b(y,z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(b(x,y)) -> b#(D(x),D(y)) p2: D#(b(x,y)) -> D#(x) p3: D#(b(x,y)) -> D#(y) p4: D#(c(x,y)) -> b#(c(y,D(x)),c(x,D(y))) p5: D#(c(x,y)) -> D#(x) p6: D#(c(x,y)) -> D#(y) p7: D#(m(x,y)) -> D#(x) p8: D#(m(x,y)) -> D#(y) p9: D#(opp(x)) -> D#(x) p10: D#(div(x,y)) -> D#(x) p11: D#(div(x,y)) -> D#(y) p12: D#(ln(x)) -> D#(x) p13: D#(pow(x,y)) -> b#(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) p14: D#(pow(x,y)) -> D#(x) p15: D#(pow(x,y)) -> D#(y) p16: b#(s(x),s(y)) -> b#(x,y) p17: b#(b(x,y),z) -> b#(x,b(y,z)) p18: b#(b(x,y),z) -> b#(y,z) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The estimated dependency graph contains the following SCCs: {p2, p3, p5, p6, p7, p8, p9, p10, p11, p12, p14, p15} {p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(pow(x,y)) -> D#(x) p3: D#(ln(x)) -> D#(x) p4: D#(div(x,y)) -> D#(y) p5: D#(div(x,y)) -> D#(x) p6: D#(opp(x)) -> D#(x) p7: D#(m(x,y)) -> D#(y) p8: D#(m(x,y)) -> D#(x) p9: D#(c(x,y)) -> D#(y) p10: D#(c(x,y)) -> D#(x) p11: D#(b(x,y)) -> D#(y) p12: D#(b(x,y)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = max{4, x1 - 2} pow_A(x1,x2) = max{3, x1, x2 + 1} ln_A(x1) = max{3, x1} div_A(x1,x2) = max{3, x1, x2} opp_A(x1) = max{7, x1 + 1} m_A(x1,x2) = max{x1, x2} c_A(x1,x2) = max{x1 + 3, x2 + 1} b_A(x1,x2) = max{3, x1, x2} precedence: D# = pow = ln = div = opp = m = c = b partial status: pi(D#) = [] pi(pow) = [2] pi(ln) = [1] pi(div) = [2] pi(opp) = [1] pi(m) = [2] pi(c) = [2] pi(b) = [2] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(pow(x,y)) -> D#(x) p3: D#(ln(x)) -> D#(x) p4: D#(div(x,y)) -> D#(y) p5: D#(div(x,y)) -> D#(x) p6: D#(m(x,y)) -> D#(y) p7: D#(m(x,y)) -> D#(x) p8: D#(c(x,y)) -> D#(y) p9: D#(c(x,y)) -> D#(x) p10: D#(b(x,y)) -> D#(y) p11: D#(b(x,y)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(b(x,y)) -> D#(x) p3: D#(b(x,y)) -> D#(y) p4: D#(c(x,y)) -> D#(x) p5: D#(c(x,y)) -> D#(y) p6: D#(m(x,y)) -> D#(x) p7: D#(m(x,y)) -> D#(y) p8: D#(div(x,y)) -> D#(x) p9: D#(div(x,y)) -> D#(y) p10: D#(ln(x)) -> D#(x) p11: D#(pow(x,y)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = max{4, x1 + 3} pow_A(x1,x2) = max{x1, x2 + 2} b_A(x1,x2) = max{x1 + 1, x2} c_A(x1,x2) = max{x1, x2} m_A(x1,x2) = max{x1 + 1, x2} div_A(x1,x2) = max{x1, x2} ln_A(x1) = x1 precedence: D# = pow = b = c = m = div = ln partial status: pi(D#) = [] pi(pow) = [2] pi(b) = [2] pi(c) = [2] pi(m) = [2] pi(div) = [2] pi(ln) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(b(x,y)) -> D#(x) p2: D#(b(x,y)) -> D#(y) p3: D#(c(x,y)) -> D#(x) p4: D#(c(x,y)) -> D#(y) p5: D#(m(x,y)) -> D#(x) p6: D#(m(x,y)) -> D#(y) p7: D#(div(x,y)) -> D#(x) p8: D#(div(x,y)) -> D#(y) p9: D#(ln(x)) -> D#(x) p10: D#(pow(x,y)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(b(x,y)) -> D#(x) p2: D#(pow(x,y)) -> D#(x) p3: D#(ln(x)) -> D#(x) p4: D#(div(x,y)) -> D#(y) p5: D#(div(x,y)) -> D#(x) p6: D#(m(x,y)) -> D#(y) p7: D#(m(x,y)) -> D#(x) p8: D#(c(x,y)) -> D#(y) p9: D#(c(x,y)) -> D#(x) p10: D#(b(x,y)) -> D#(y) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = max{2, x1 - 4} b_A(x1,x2) = max{7, x1, x2 + 3} pow_A(x1,x2) = max{x1, x2 + 2} ln_A(x1) = max{1, x1} div_A(x1,x2) = max{1, x1, x2} m_A(x1,x2) = max{x1 + 1, x2} c_A(x1,x2) = max{1, x1, x2} precedence: pow > D# = b = ln = div = m = c partial status: pi(D#) = [] pi(b) = [2] pi(pow) = [2] pi(ln) = [1] pi(div) = [2] pi(m) = [2] pi(c) = [2] The next rules are strictly ordered: p10 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(b(x,y)) -> D#(x) p2: D#(pow(x,y)) -> D#(x) p3: D#(ln(x)) -> D#(x) p4: D#(div(x,y)) -> D#(y) p5: D#(div(x,y)) -> D#(x) p6: D#(m(x,y)) -> D#(y) p7: D#(m(x,y)) -> D#(x) p8: D#(c(x,y)) -> D#(y) p9: D#(c(x,y)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(b(x,y)) -> D#(x) p2: D#(c(x,y)) -> D#(x) p3: D#(c(x,y)) -> D#(y) p4: D#(m(x,y)) -> D#(x) p5: D#(m(x,y)) -> D#(y) p6: D#(div(x,y)) -> D#(x) p7: D#(div(x,y)) -> D#(y) p8: D#(ln(x)) -> D#(x) p9: D#(pow(x,y)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = max{4, x1 + 3} b_A(x1,x2) = max{x1, x2} c_A(x1,x2) = max{x1, x2 + 2} m_A(x1,x2) = max{x1, x2} div_A(x1,x2) = max{x1, x2} ln_A(x1) = x1 + 1 pow_A(x1,x2) = max{1, x1, x2} precedence: D# = b = c = m = div = ln = pow partial status: pi(D#) = [] pi(b) = [2] pi(c) = [2] pi(m) = [2] pi(div) = [2] pi(ln) = [1] pi(pow) = [2] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(b(x,y)) -> D#(x) p2: D#(c(x,y)) -> D#(x) p3: D#(m(x,y)) -> D#(x) p4: D#(m(x,y)) -> D#(y) p5: D#(div(x,y)) -> D#(x) p6: D#(div(x,y)) -> D#(y) p7: D#(ln(x)) -> D#(x) p8: D#(pow(x,y)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(b(x,y)) -> D#(x) p2: D#(pow(x,y)) -> D#(x) p3: D#(ln(x)) -> D#(x) p4: D#(div(x,y)) -> D#(y) p5: D#(div(x,y)) -> D#(x) p6: D#(m(x,y)) -> D#(y) p7: D#(m(x,y)) -> D#(x) p8: D#(c(x,y)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = x1 + 4 b_A(x1,x2) = max{x1, x2} pow_A(x1,x2) = max{x1 + 1, x2 - 1} ln_A(x1) = x1 + 1 div_A(x1,x2) = max{x1, x2} m_A(x1,x2) = max{x1 + 3, x2 + 5} c_A(x1,x2) = max{x1, x2 + 1} precedence: div = m > D# = b = ln = c > pow partial status: pi(D#) = [1] pi(b) = [1, 2] pi(pow) = [] pi(ln) = [1] pi(div) = [1, 2] pi(m) = [1, 2] pi(c) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(x) p2: D#(ln(x)) -> D#(x) p3: D#(div(x,y)) -> D#(y) p4: D#(div(x,y)) -> D#(x) p5: D#(m(x,y)) -> D#(y) p6: D#(m(x,y)) -> D#(x) p7: D#(c(x,y)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(x) p2: D#(c(x,y)) -> D#(x) p3: D#(m(x,y)) -> D#(x) p4: D#(m(x,y)) -> D#(y) p5: D#(div(x,y)) -> D#(x) p6: D#(div(x,y)) -> D#(y) p7: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = x1 + 2 pow_A(x1,x2) = max{x1, x2} c_A(x1,x2) = max{x1, x2} m_A(x1,x2) = max{x1, x2} div_A(x1,x2) = max{x1 + 1, x2 + 1} ln_A(x1) = x1 precedence: D# = pow = c = m = div = ln partial status: pi(D#) = [1] pi(pow) = [1, 2] pi(c) = [1, 2] pi(m) = [1, 2] pi(div) = [1, 2] pi(ln) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(c(x,y)) -> D#(x) p2: D#(m(x,y)) -> D#(x) p3: D#(m(x,y)) -> D#(y) p4: D#(div(x,y)) -> D#(x) p5: D#(div(x,y)) -> D#(y) p6: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(c(x,y)) -> D#(x) p2: D#(ln(x)) -> D#(x) p3: D#(div(x,y)) -> D#(y) p4: D#(div(x,y)) -> D#(x) p5: D#(m(x,y)) -> D#(y) p6: D#(m(x,y)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = x1 + 3 c_A(x1,x2) = max{x1 + 4, x2 + 2} ln_A(x1) = x1 + 4 div_A(x1,x2) = max{x1 + 2, x2 + 4} m_A(x1,x2) = max{x1 + 4, x2 + 4} precedence: div > D# = c = ln = m partial status: pi(D#) = [1] pi(c) = [1, 2] pi(ln) = [1] pi(div) = [1, 2] pi(m) = [1, 2] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(c(x,y)) -> D#(x) p2: D#(ln(x)) -> D#(x) p3: D#(div(x,y)) -> D#(y) p4: D#(div(x,y)) -> D#(x) p5: D#(m(x,y)) -> D#(y) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(c(x,y)) -> D#(x) p2: D#(m(x,y)) -> D#(y) p3: D#(div(x,y)) -> D#(x) p4: D#(div(x,y)) -> D#(y) p5: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = max{4, x1 + 3} c_A(x1,x2) = max{x1 + 1, x2 + 1} m_A(x1,x2) = x2 div_A(x1,x2) = max{x1, x2 + 2} ln_A(x1) = x1 precedence: D# = c = m = div = ln partial status: pi(D#) = [] pi(c) = [2] pi(m) = [2] pi(div) = [2] pi(ln) = [1] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(c(x,y)) -> D#(x) p2: D#(m(x,y)) -> D#(y) p3: D#(div(x,y)) -> D#(x) p4: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(c(x,y)) -> D#(x) p2: D#(ln(x)) -> D#(x) p3: D#(div(x,y)) -> D#(x) p4: D#(m(x,y)) -> D#(y) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = max{3, x1 + 2} c_A(x1,x2) = max{x1, x2} ln_A(x1) = x1 div_A(x1,x2) = max{x1 + 3, x2 + 3} m_A(x1,x2) = max{x1 + 1, x2} precedence: D# = c = ln = div = m partial status: pi(D#) = [] pi(c) = [2] pi(ln) = [1] pi(div) = [2] pi(m) = [2] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(c(x,y)) -> D#(x) p2: D#(ln(x)) -> D#(x) p3: D#(m(x,y)) -> D#(y) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(c(x,y)) -> D#(x) p2: D#(m(x,y)) -> D#(y) p3: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = x1 + 2 c_A(x1,x2) = max{x1, x2} m_A(x1,x2) = x2 ln_A(x1) = x1 precedence: c = m = ln > D# partial status: pi(D#) = [1] pi(c) = [1, 2] pi(m) = [2] pi(ln) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(m(x,y)) -> D#(y) p2: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(m(x,y)) -> D#(y) p2: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = max{5, x1 + 2} m_A(x1,x2) = x2 + 3 ln_A(x1) = max{3, x1} precedence: D# = m = ln partial status: pi(D#) = [1] pi(m) = [2] pi(ln) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(ln(x)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: D#_A(x1) = x1 + 2 ln_A(x1) = x1 + 2 precedence: D# = ln partial status: pi(D#) = [1] pi(ln) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: b#(s(x),s(y)) -> b#(x,y) p2: b#(b(x,y),z) -> b#(y,z) p3: b#(b(x,y),z) -> b#(x,b(y,z)) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of r10, r11, r12, r13 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: b#_A(x1,x2) = max{x1 + 3, x2 + 2} s_A(x1) = x1 b_A(x1,x2) = max{x1 + 1, x2} h_A = 0 precedence: s = b > b# = h partial status: pi(b#) = [1, 2] pi(s) = [] pi(b) = [] pi(h) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: b#(s(x),s(y)) -> b#(x,y) p2: b#(b(x,y),z) -> b#(y,z) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: b#(s(x),s(y)) -> b#(x,y) p2: b#(b(x,y),z) -> b#(y,z) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: b#_A(x1,x2) = max{0, x1 - 2} s_A(x1) = max{2, x1} b_A(x1,x2) = max{3, x1 - 1, x2 + 1} precedence: b# = s = b partial status: pi(b#) = [] pi(s) = [1] pi(b) = [2] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: b#(s(x),s(y)) -> b#(x,y) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: b#(s(x),s(y)) -> b#(x,y) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: b#_A(x1,x2) = max{0, x1 - 2, x2 - 2} s_A(x1) = max{3, x1 + 1} precedence: b# = s partial status: pi(b#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.