YES We show the termination of the TRS R: and(true(),y) -> y and(false(),y) -> false() eq(nil(),nil()) -> true() eq(cons(t,l),nil()) -> false() eq(nil(),cons(t,l)) -> false() eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) eq(var(l),var(|l'|)) -> eq(l,|l'|) eq(var(l),apply(t,s)) -> false() eq(var(l),lambda(x,t)) -> false() eq(apply(t,s),var(l)) -> false() eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) eq(apply(t,s),lambda(x,t)) -> false() eq(lambda(x,t),var(l)) -> false() eq(lambda(x,t),apply(t,s)) -> false() eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) if(true(),var(k),var(|l'|)) -> var(k) if(false(),var(k),var(|l'|)) -> var(|l'|) ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(t,l),cons(|t'|,|l'|)) -> and#(eq(t,|t'|),eq(l,|l'|)) p2: eq#(cons(t,l),cons(|t'|,|l'|)) -> eq#(t,|t'|) p3: eq#(cons(t,l),cons(|t'|,|l'|)) -> eq#(l,|l'|) p4: eq#(var(l),var(|l'|)) -> eq#(l,|l'|) p5: eq#(apply(t,s),apply(|t'|,|s'|)) -> and#(eq(t,|t'|),eq(s,|s'|)) p6: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(t,|t'|) p7: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(s,|s'|) p8: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> and#(eq(x,|x'|),eq(t,|t'|)) p9: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(x,|x'|) p10: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(t,|t'|) p11: ren#(var(l),var(k),var(|l'|)) -> if#(eq(l,|l'|),var(k),var(|l'|)) p12: ren#(var(l),var(k),var(|l'|)) -> eq#(l,|l'|) p13: ren#(x,y,apply(t,s)) -> ren#(x,y,t) p14: ren#(x,y,apply(t,s)) -> ren#(x,y,s) p15: ren#(x,y,lambda(z,t)) -> ren#(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t)) p16: ren#(x,y,lambda(z,t)) -> ren#(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The estimated dependency graph contains the following SCCs: {p13, p14, p15, p16} {p2, p3, p4, p6, p7, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ren#(x,y,lambda(z,t)) -> ren#(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t) p2: ren#(x,y,lambda(z,t)) -> ren#(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t)) p3: ren#(x,y,apply(t,s)) -> ren#(x,y,s) p4: ren#(x,y,apply(t,s)) -> ren#(x,y,t) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: ren#_A(x1,x2,x3) = max{71, x3 - 7} lambda_A(x1,x2) = max{x1 + 79, x2 + 79} var_A(x1) = 0 cons_A(x1,x2) = max{58, x2 + 14} nil_A = 23 ren_A(x1,x2,x3) = x3 apply_A(x1,x2) = max{104, x1 + 18, x2 + 19} and_A(x1,x2) = max{81, x1 - 86, x2} true_A = 2 false_A = 80 eq_A(x1,x2) = 81 if_A(x1,x2,x3) = max{x2, x3 - 1} precedence: lambda = nil = ren = apply = and = true = eq > ren# = var = cons = false = if partial status: pi(ren#) = [] pi(lambda) = [] pi(var) = [] pi(cons) = [2] pi(nil) = [] pi(ren) = [] pi(apply) = [] pi(and) = [] pi(true) = [] pi(false) = [] pi(eq) = [] pi(if) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ren#(x,y,lambda(z,t)) -> ren#(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t) p2: ren#(x,y,lambda(z,t)) -> ren#(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t)) p3: ren#(x,y,apply(t,s)) -> ren#(x,y,s) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ren#(x,y,lambda(z,t)) -> ren#(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t) p2: ren#(x,y,apply(t,s)) -> ren#(x,y,s) p3: ren#(x,y,lambda(z,t)) -> ren#(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t)) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: ren#_A(x1,x2,x3) = max{142, x3 + 58} lambda_A(x1,x2) = max{132, x2 + 106} var_A(x1) = 0 cons_A(x1,x2) = max{299, x1 + 155, x2 - 20} nil_A = 141 apply_A(x1,x2) = max{352, x1 + 301, x2 + 327} ren_A(x1,x2,x3) = max{25, x3} and_A(x1,x2) = max{321, x1, x2} true_A = 321 false_A = 154 eq_A(x1,x2) = 321 if_A(x1,x2,x3) = max{x1 - 321, x2 + 25, x3 - 1} precedence: and = eq > ren# = lambda = var = cons = nil = apply = ren = true = false = if partial status: pi(ren#) = [3] pi(lambda) = [] pi(var) = [] pi(cons) = [1] pi(nil) = [] pi(apply) = [] pi(ren) = [] pi(and) = [] pi(true) = [] pi(false) = [] pi(eq) = [] pi(if) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ren#(x,y,lambda(z,t)) -> ren#(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t) p2: ren#(x,y,lambda(z,t)) -> ren#(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t)) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ren#(x,y,lambda(z,t)) -> ren#(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t) p2: ren#(x,y,lambda(z,t)) -> ren#(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t)) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: ren#_A(x1,x2,x3) = max{4, x3 - 1} lambda_A(x1,x2) = x2 + 150 var_A(x1) = 0 cons_A(x1,x2) = 47 nil_A = 3 ren_A(x1,x2,x3) = x3 and_A(x1,x2) = max{253, x1 - 254, x2} true_A = 252 false_A = 0 eq_A(x1,x2) = 253 apply_A(x1,x2) = max{3, x1, x2} if_A(x1,x2,x3) = max{x2, x3 - 6} precedence: ren# = and = true = eq > cons = ren = apply > lambda > var = if > false > nil partial status: pi(ren#) = [] pi(lambda) = [] pi(var) = [] pi(cons) = [] pi(nil) = [] pi(ren) = [] pi(and) = [] pi(true) = [] pi(false) = [] pi(eq) = [] pi(apply) = [] pi(if) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ren#(x,y,lambda(z,t)) -> ren#(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ren#(x,y,lambda(z,t)) -> ren#(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: ren#_A(x1,x2,x3) = max{x1 + 8, x2 + 4, x3 + 1} lambda_A(x1,x2) = max{10, x1 + 8, x2 + 7} var_A(x1) = max{1, x1 - 40} cons_A(x1,x2) = max{15, x1 + 9, x2 + 12} nil_A = 0 precedence: ren# = lambda = var = cons = nil partial status: pi(ren#) = [] pi(lambda) = [2] pi(var) = [] pi(cons) = [] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(t,l),cons(|t'|,|l'|)) -> eq#(t,|t'|) p2: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(t,|t'|) p3: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(x,|x'|) p4: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(s,|s'|) p5: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(t,|t'|) p6: eq#(var(l),var(|l'|)) -> eq#(l,|l'|) p7: eq#(cons(t,l),cons(|t'|,|l'|)) -> eq#(l,|l'|) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{2, x1 + 1, x2 - 2} cons_A(x1,x2) = max{x1 + 1, x2} lambda_A(x1,x2) = max{x1 + 1, x2} apply_A(x1,x2) = max{x1 + 1, x2} var_A(x1) = max{1, x1} precedence: eq# = cons = lambda = apply = var partial status: pi(eq#) = [1] pi(cons) = [2] pi(lambda) = [2] pi(apply) = [2] pi(var) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(t,|t'|) p2: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(x,|x'|) p3: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(s,|s'|) p4: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(t,|t'|) p5: eq#(var(l),var(|l'|)) -> eq#(l,|l'|) p6: eq#(cons(t,l),cons(|t'|,|l'|)) -> eq#(l,|l'|) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(t,|t'|) p2: eq#(cons(t,l),cons(|t'|,|l'|)) -> eq#(l,|l'|) p3: eq#(var(l),var(|l'|)) -> eq#(l,|l'|) p4: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(t,|t'|) p5: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(s,|s'|) p6: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(x,|x'|) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{2, x1 + 1, x2 - 2} lambda_A(x1,x2) = max{x1 + 1, x2} cons_A(x1,x2) = max{1, x2} var_A(x1) = x1 apply_A(x1,x2) = max{x1 + 5, x2} precedence: eq# = lambda = cons = var = apply partial status: pi(eq#) = [1] pi(lambda) = [2] pi(cons) = [2] pi(var) = [1] pi(apply) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(t,l),cons(|t'|,|l'|)) -> eq#(l,|l'|) p2: eq#(var(l),var(|l'|)) -> eq#(l,|l'|) p3: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(t,|t'|) p4: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(s,|s'|) p5: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(x,|x'|) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(t,l),cons(|t'|,|l'|)) -> eq#(l,|l'|) p2: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(x,|x'|) p3: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(s,|s'|) p4: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(t,|t'|) p5: eq#(var(l),var(|l'|)) -> eq#(l,|l'|) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{0, x2 - 2} cons_A(x1,x2) = max{5, x1, x2 + 3} lambda_A(x1,x2) = max{x1 + 3, x2 + 5} apply_A(x1,x2) = max{x1 + 5, x2 + 3} var_A(x1) = max{5, x1 + 1} precedence: eq# = cons = lambda = apply = var partial status: pi(eq#) = [] pi(cons) = [1, 2] pi(lambda) = [2] pi(apply) = [2] pi(var) = [1] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(t,l),cons(|t'|,|l'|)) -> eq#(l,|l'|) p2: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(x,|x'|) p3: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(s,|s'|) p4: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(t,|t'|) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(t,l),cons(|t'|,|l'|)) -> eq#(l,|l'|) p2: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(t,|t'|) p3: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(s,|s'|) p4: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(x,|x'|) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{1, x1 - 2, x2 - 4} cons_A(x1,x2) = max{x1 + 6, x2 + 1} apply_A(x1,x2) = max{x1 + 3, x2 + 1} lambda_A(x1,x2) = x1 precedence: eq# > cons = apply > lambda partial status: pi(eq#) = [] pi(cons) = [2] pi(apply) = [2] pi(lambda) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(t,|t'|) p2: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(s,|s'|) p3: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(x,|x'|) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(t,|t'|) p2: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(x,|x'|) p3: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(s,|s'|) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{x1 - 1, x2 + 1} apply_A(x1,x2) = max{x1, x2} lambda_A(x1,x2) = max{x1, x2} precedence: eq# = apply = lambda partial status: pi(eq#) = [2] pi(apply) = [1, 2] pi(lambda) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(x,|x'|) p2: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(s,|s'|) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(x,|x'|) p2: eq#(apply(t,s),apply(|t'|,|s'|)) -> eq#(s,|s'|) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{0, x1 - 4} lambda_A(x1,x2) = max{x1 + 3, x2 + 3} apply_A(x1,x2) = max{x1 + 5, x2 + 1} precedence: eq# = lambda = apply partial status: pi(eq#) = [] pi(lambda) = [2] pi(apply) = [2] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(x,|x'|) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(lambda(x,t),lambda(|x'|,|t'|)) -> eq#(x,|x'|) and R consists of: r1: and(true(),y) -> y r2: and(false(),y) -> false() r3: eq(nil(),nil()) -> true() r4: eq(cons(t,l),nil()) -> false() r5: eq(nil(),cons(t,l)) -> false() r6: eq(cons(t,l),cons(|t'|,|l'|)) -> and(eq(t,|t'|),eq(l,|l'|)) r7: eq(var(l),var(|l'|)) -> eq(l,|l'|) r8: eq(var(l),apply(t,s)) -> false() r9: eq(var(l),lambda(x,t)) -> false() r10: eq(apply(t,s),var(l)) -> false() r11: eq(apply(t,s),apply(|t'|,|s'|)) -> and(eq(t,|t'|),eq(s,|s'|)) r12: eq(apply(t,s),lambda(x,t)) -> false() r13: eq(lambda(x,t),var(l)) -> false() r14: eq(lambda(x,t),apply(t,s)) -> false() r15: eq(lambda(x,t),lambda(|x'|,|t'|)) -> and(eq(x,|x'|),eq(t,|t'|)) r16: if(true(),var(k),var(|l'|)) -> var(k) r17: if(false(),var(k),var(|l'|)) -> var(|l'|) r18: ren(var(l),var(k),var(|l'|)) -> if(eq(l,|l'|),var(k),var(|l'|)) r19: ren(x,y,apply(t,s)) -> apply(ren(x,y,t),ren(x,y,s)) r20: ren(x,y,lambda(z,t)) -> lambda(var(cons(x,cons(y,cons(lambda(z,t),nil())))),ren(x,y,ren(z,var(cons(x,cons(y,cons(lambda(z,t),nil())))),t))) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{x1 - 1, x2 + 1} lambda_A(x1,x2) = max{x1, x2 + 2} precedence: eq# = lambda partial status: pi(eq#) = [2] pi(lambda) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.