YES We show the termination of the TRS R: active(and(true(),X)) -> mark(X) active(and(false(),Y)) -> mark(false()) active(if(true(),X,Y)) -> mark(X) active(if(false(),X,Y)) -> mark(Y) active(add(|0|(),X)) -> mark(X) active(add(s(X),Y)) -> mark(s(add(X,Y))) active(first(|0|(),X)) -> mark(nil()) active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) active(from(X)) -> mark(cons(X,from(s(X)))) mark(and(X1,X2)) -> active(and(mark(X1),X2)) mark(true()) -> active(true()) mark(false()) -> active(false()) mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) mark(add(X1,X2)) -> active(add(mark(X1),X2)) mark(|0|()) -> active(|0|()) mark(s(X)) -> active(s(X)) mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) mark(nil()) -> active(nil()) mark(cons(X1,X2)) -> active(cons(X1,X2)) mark(from(X)) -> active(from(X)) and(mark(X1),X2) -> and(X1,X2) and(X1,mark(X2)) -> and(X1,X2) and(active(X1),X2) -> and(X1,X2) and(X1,active(X2)) -> and(X1,X2) if(mark(X1),X2,X3) -> if(X1,X2,X3) if(X1,mark(X2),X3) -> if(X1,X2,X3) if(X1,X2,mark(X3)) -> if(X1,X2,X3) if(active(X1),X2,X3) -> if(X1,X2,X3) if(X1,active(X2),X3) -> if(X1,X2,X3) if(X1,X2,active(X3)) -> if(X1,X2,X3) add(mark(X1),X2) -> add(X1,X2) add(X1,mark(X2)) -> add(X1,X2) add(active(X1),X2) -> add(X1,X2) add(X1,active(X2)) -> add(X1,X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1),X2) -> first(X1,X2) first(X1,mark(X2)) -> first(X1,X2) first(active(X1),X2) -> first(X1,X2) first(X1,active(X2)) -> first(X1,X2) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: active#(and(false(),Y)) -> mark#(false()) p3: active#(if(true(),X,Y)) -> mark#(X) p4: active#(if(false(),X,Y)) -> mark#(Y) p5: active#(add(|0|(),X)) -> mark#(X) p6: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p7: active#(add(s(X),Y)) -> s#(add(X,Y)) p8: active#(add(s(X),Y)) -> add#(X,Y) p9: active#(first(|0|(),X)) -> mark#(nil()) p10: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p11: active#(first(s(X),cons(Y,Z))) -> cons#(Y,first(X,Z)) p12: active#(first(s(X),cons(Y,Z))) -> first#(X,Z) p13: active#(from(X)) -> mark#(cons(X,from(s(X)))) p14: active#(from(X)) -> cons#(X,from(s(X))) p15: active#(from(X)) -> from#(s(X)) p16: active#(from(X)) -> s#(X) p17: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p18: mark#(and(X1,X2)) -> and#(mark(X1),X2) p19: mark#(and(X1,X2)) -> mark#(X1) p20: mark#(true()) -> active#(true()) p21: mark#(false()) -> active#(false()) p22: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p23: mark#(if(X1,X2,X3)) -> if#(mark(X1),X2,X3) p24: mark#(if(X1,X2,X3)) -> mark#(X1) p25: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p26: mark#(add(X1,X2)) -> add#(mark(X1),X2) p27: mark#(add(X1,X2)) -> mark#(X1) p28: mark#(|0|()) -> active#(|0|()) p29: mark#(s(X)) -> active#(s(X)) p30: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p31: mark#(first(X1,X2)) -> first#(mark(X1),mark(X2)) p32: mark#(first(X1,X2)) -> mark#(X1) p33: mark#(first(X1,X2)) -> mark#(X2) p34: mark#(nil()) -> active#(nil()) p35: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p36: mark#(from(X)) -> active#(from(X)) p37: and#(mark(X1),X2) -> and#(X1,X2) p38: and#(X1,mark(X2)) -> and#(X1,X2) p39: and#(active(X1),X2) -> and#(X1,X2) p40: and#(X1,active(X2)) -> and#(X1,X2) p41: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p42: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) p43: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p44: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p45: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p46: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p47: add#(mark(X1),X2) -> add#(X1,X2) p48: add#(X1,mark(X2)) -> add#(X1,X2) p49: add#(active(X1),X2) -> add#(X1,X2) p50: add#(X1,active(X2)) -> add#(X1,X2) p51: s#(mark(X)) -> s#(X) p52: s#(active(X)) -> s#(X) p53: first#(mark(X1),X2) -> first#(X1,X2) p54: first#(X1,mark(X2)) -> first#(X1,X2) p55: first#(active(X1),X2) -> first#(X1,X2) p56: first#(X1,active(X2)) -> first#(X1,X2) p57: cons#(mark(X1),X2) -> cons#(X1,X2) p58: cons#(X1,mark(X2)) -> cons#(X1,X2) p59: cons#(active(X1),X2) -> cons#(X1,X2) p60: cons#(X1,active(X2)) -> cons#(X1,X2) p61: from#(mark(X)) -> from#(X) p62: from#(active(X)) -> from#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5, p6, p10, p13, p17, p19, p22, p24, p25, p27, p29, p30, p32, p33, p35, p36} {p51, p52} {p47, p48, p49, p50} {p57, p58, p59, p60} {p53, p54, p55, p56} {p61, p62} {p37, p38, p39, p40} {p41, p42, p43, p44, p45, p46} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(from(X)) -> active#(from(X)) p3: active#(from(X)) -> mark#(cons(X,from(s(X)))) p4: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p5: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p6: mark#(first(X1,X2)) -> mark#(X2) p7: mark#(first(X1,X2)) -> mark#(X1) p8: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p9: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p10: mark#(s(X)) -> active#(s(X)) p11: active#(add(|0|(),X)) -> mark#(X) p12: mark#(add(X1,X2)) -> mark#(X1) p13: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p14: active#(if(false(),X,Y)) -> mark#(Y) p15: mark#(if(X1,X2,X3)) -> mark#(X1) p16: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p17: active#(if(true(),X,Y)) -> mark#(X) p18: mark#(and(X1,X2)) -> mark#(X1) p19: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = x1 + 14 and_A(x1,x2) = max{x1 + 6, x2 + 6} true_A = 4 mark#_A(x1) = x1 + 14 from_A(x1) = max{12, x1 - 1} cons_A(x1,x2) = max{5, x2} s_A(x1) = max{5, x1} first_A(x1,x2) = max{x1 + 6, x2 + 10} mark_A(x1) = x1 add_A(x1,x2) = max{x1 + 6, x2} |0|_A = 4 if_A(x1,x2,x3) = max{x1 + 12, x2 + 15, x3 + 13} false_A = 5 active_A(x1) = max{3, x1} nil_A = 9 precedence: active# = and = true = mark# = from = cons = s = first = mark = add = |0| = if = false = active = nil partial status: pi(active#) = [1] pi(and) = [] pi(true) = [] pi(mark#) = [1] pi(from) = [] pi(cons) = [] pi(s) = [] pi(first) = [] pi(mark) = [1] pi(add) = [2] pi(|0|) = [] pi(if) = [] pi(false) = [] pi(active) = [1] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(from(X)) -> active#(from(X)) p2: active#(from(X)) -> mark#(cons(X,from(s(X)))) p3: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p4: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p5: mark#(first(X1,X2)) -> mark#(X2) p6: mark#(first(X1,X2)) -> mark#(X1) p7: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p8: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p9: mark#(s(X)) -> active#(s(X)) p10: active#(add(|0|(),X)) -> mark#(X) p11: mark#(add(X1,X2)) -> mark#(X1) p12: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p13: active#(if(false(),X,Y)) -> mark#(Y) p14: mark#(if(X1,X2,X3)) -> mark#(X1) p15: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p16: active#(if(true(),X,Y)) -> mark#(X) p17: mark#(and(X1,X2)) -> mark#(X1) p18: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(from(X)) -> active#(from(X)) p2: active#(if(true(),X,Y)) -> mark#(X) p3: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p4: active#(if(false(),X,Y)) -> mark#(Y) p5: mark#(and(X1,X2)) -> mark#(X1) p6: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p7: active#(add(|0|(),X)) -> mark#(X) p8: mark#(if(X1,X2,X3)) -> mark#(X1) p9: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p10: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p11: mark#(add(X1,X2)) -> mark#(X1) p12: mark#(s(X)) -> active#(s(X)) p13: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p14: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p15: active#(from(X)) -> mark#(cons(X,from(s(X)))) p16: mark#(first(X1,X2)) -> mark#(X1) p17: mark#(first(X1,X2)) -> mark#(X2) p18: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{18, x1} from_A(x1) = max{38, x1 + 30} active#_A(x1) = max{5, x1 - 9} if_A(x1,x2,x3) = max{x1 + 17, x2 + 17, x3 + 17} true_A = 10 and_A(x1,x2) = max{x1 + 7, x2 + 12} mark_A(x1) = x1 false_A = 11 add_A(x1,x2) = max{x1 + 80, x2 + 80} |0|_A = 9 s_A(x1) = 8 first_A(x1,x2) = max{x1 + 36, x2 + 29} cons_A(x1,x2) = max{29, x1 + 21} active_A(x1) = max{8, x1} nil_A = 8 precedence: add > mark# = active# = true = and = false > from = if = mark = |0| = s = first = cons = active = nil partial status: pi(mark#) = [] pi(from) = [] pi(active#) = [] pi(if) = [] pi(true) = [] pi(and) = [] pi(mark) = [] pi(false) = [] pi(add) = [] pi(|0|) = [] pi(s) = [] pi(first) = [] pi(cons) = [] pi(active) = [] pi(nil) = [] The next rules are strictly ordered: p12 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(from(X)) -> active#(from(X)) p2: active#(if(true(),X,Y)) -> mark#(X) p3: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p4: active#(if(false(),X,Y)) -> mark#(Y) p5: mark#(and(X1,X2)) -> mark#(X1) p6: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p7: active#(add(|0|(),X)) -> mark#(X) p8: mark#(if(X1,X2,X3)) -> mark#(X1) p9: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p10: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p11: mark#(add(X1,X2)) -> mark#(X1) p12: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p13: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p14: active#(from(X)) -> mark#(cons(X,from(s(X)))) p15: mark#(first(X1,X2)) -> mark#(X1) p16: mark#(first(X1,X2)) -> mark#(X2) p17: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(from(X)) -> active#(from(X)) p2: active#(from(X)) -> mark#(cons(X,from(s(X)))) p3: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p4: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p5: mark#(first(X1,X2)) -> mark#(X2) p6: mark#(first(X1,X2)) -> mark#(X1) p7: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p8: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p9: mark#(add(X1,X2)) -> mark#(X1) p10: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p11: active#(add(|0|(),X)) -> mark#(X) p12: mark#(if(X1,X2,X3)) -> mark#(X1) p13: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p14: active#(if(false(),X,Y)) -> mark#(Y) p15: mark#(and(X1,X2)) -> mark#(X1) p16: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p17: active#(if(true(),X,Y)) -> mark#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 10 from_A(x1) = x1 + 94 active#_A(x1) = max{45, x1 - 7} cons_A(x1,x2) = max{76, x1 - 11} s_A(x1) = 95 first_A(x1,x2) = max{x1 + 35, x2 + 35} mark_A(x1) = x1 add_A(x1,x2) = max{x1 + 113, x2 + 113} |0|_A = 6 if_A(x1,x2,x3) = max{x1 + 4, x2 + 36, x3 + 36} false_A = 6 and_A(x1,x2) = max{x1 + 1, x2 + 36} true_A = 6 active_A(x1) = max{5, x1} nil_A = 34 precedence: mark# > from > active# = cons = s = first = mark = add = |0| = if = false = and = true = active = nil partial status: pi(mark#) = [1] pi(from) = [] pi(active#) = [] pi(cons) = [] pi(s) = [] pi(first) = [] pi(mark) = [1] pi(add) = [2] pi(|0|) = [] pi(if) = [] pi(false) = [] pi(and) = [2] pi(true) = [] pi(active) = [1] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(from(X)) -> mark#(cons(X,from(s(X)))) p2: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p3: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p4: mark#(first(X1,X2)) -> mark#(X2) p5: mark#(first(X1,X2)) -> mark#(X1) p6: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p7: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p8: mark#(add(X1,X2)) -> mark#(X1) p9: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p10: active#(add(|0|(),X)) -> mark#(X) p11: mark#(if(X1,X2,X3)) -> mark#(X1) p12: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p13: active#(if(false(),X,Y)) -> mark#(Y) p14: mark#(and(X1,X2)) -> mark#(X1) p15: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p16: active#(if(true(),X,Y)) -> mark#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(from(X)) -> mark#(cons(X,from(s(X)))) p2: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p3: active#(if(true(),X,Y)) -> mark#(X) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p6: active#(if(false(),X,Y)) -> mark#(Y) p7: mark#(if(X1,X2,X3)) -> mark#(X1) p8: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p9: active#(add(|0|(),X)) -> mark#(X) p10: mark#(add(X1,X2)) -> mark#(X1) p11: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p12: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p13: mark#(first(X1,X2)) -> mark#(X1) p14: mark#(first(X1,X2)) -> mark#(X2) p15: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p16: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = x1 + 41 from_A(x1) = 169 mark#_A(x1) = 96 cons_A(x1,x2) = 55 s_A(x1) = 169 and_A(x1,x2) = 0 mark_A(x1) = 167 if_A(x1,x2,x3) = 55 true_A = 124 false_A = 124 add_A(x1,x2) = 55 |0|_A = 147 first_A(x1,x2) = 55 active_A(x1) = max{167, x1 - 3} nil_A = 170 precedence: active# = from = mark# = cons = s = and = mark = if = true = false = add = |0| = first = active = nil partial status: pi(active#) = [] pi(from) = [] pi(mark#) = [] pi(cons) = [] pi(s) = [] pi(and) = [] pi(mark) = [] pi(if) = [] pi(true) = [] pi(false) = [] pi(add) = [] pi(|0|) = [] pi(first) = [] pi(active) = [] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p2: active#(if(true(),X,Y)) -> mark#(X) p3: mark#(and(X1,X2)) -> mark#(X1) p4: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p5: active#(if(false(),X,Y)) -> mark#(Y) p6: mark#(if(X1,X2,X3)) -> mark#(X1) p7: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p8: active#(add(|0|(),X)) -> mark#(X) p9: mark#(add(X1,X2)) -> mark#(X1) p10: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p11: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p12: mark#(first(X1,X2)) -> mark#(X1) p13: mark#(first(X1,X2)) -> mark#(X2) p14: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p15: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p2: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p3: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p4: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p5: mark#(first(X1,X2)) -> mark#(X2) p6: mark#(first(X1,X2)) -> mark#(X1) p7: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p8: active#(add(|0|(),X)) -> mark#(X) p9: mark#(add(X1,X2)) -> mark#(X1) p10: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p11: active#(if(false(),X,Y)) -> mark#(Y) p12: mark#(if(X1,X2,X3)) -> mark#(X1) p13: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p14: active#(if(true(),X,Y)) -> mark#(X) p15: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 22 and_A(x1,x2) = max{x1 + 25, x2 + 24} active#_A(x1) = max{27, x1} mark_A(x1) = x1 + 3 first_A(x1,x2) = max{x1 + 75, x2 + 75} s_A(x1) = 14 cons_A(x1,x2) = 6 add_A(x1,x2) = max{26, x1 + 23, x2 + 22} |0|_A = 7 if_A(x1,x2,x3) = max{x1 + 27, x2 + 27, x3 + 27} false_A = 6 true_A = 7 active_A(x1) = max{9, x1} nil_A = 6 from_A(x1) = x1 + 13 precedence: mark = s = cons = add = nil > mark# = and = |0| = if > active# = first > false = true = active > from partial status: pi(mark#) = [1] pi(and) = [1] pi(active#) = [1] pi(mark) = [1] pi(first) = [] pi(s) = [] pi(cons) = [] pi(add) = [1] pi(|0|) = [] pi(if) = [] pi(false) = [] pi(true) = [] pi(active) = [1] pi(nil) = [] pi(from) = [] The next rules are strictly ordered: p14 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p2: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p3: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p4: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p5: mark#(first(X1,X2)) -> mark#(X2) p6: mark#(first(X1,X2)) -> mark#(X1) p7: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p8: active#(add(|0|(),X)) -> mark#(X) p9: mark#(add(X1,X2)) -> mark#(X1) p10: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p11: active#(if(false(),X,Y)) -> mark#(Y) p12: mark#(if(X1,X2,X3)) -> mark#(X1) p13: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p14: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p2: active#(if(false(),X,Y)) -> mark#(Y) p3: mark#(and(X1,X2)) -> mark#(X1) p4: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p5: active#(add(|0|(),X)) -> mark#(X) p6: mark#(if(X1,X2,X3)) -> mark#(X1) p7: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p8: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p9: mark#(add(X1,X2)) -> mark#(X1) p10: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p11: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p12: mark#(first(X1,X2)) -> mark#(X1) p13: mark#(first(X1,X2)) -> mark#(X2) p14: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 28 and_A(x1,x2) = 28 active#_A(x1) = max{6, x1} mark_A(x1) = 47 if_A(x1,x2,x3) = 28 false_A = 37 add_A(x1,x2) = 28 |0|_A = 36 s_A(x1) = 7 first_A(x1,x2) = 28 cons_A(x1,x2) = 6 active_A(x1) = max{47, x1 + 10} true_A = 37 nil_A = 37 from_A(x1) = 4 precedence: mark# = and = active# = mark = if = false = add = |0| = s = first = cons = active = true = nil = from partial status: pi(mark#) = [] pi(and) = [] pi(active#) = [] pi(mark) = [] pi(if) = [] pi(false) = [] pi(add) = [] pi(|0|) = [] pi(s) = [] pi(first) = [] pi(cons) = [] pi(active) = [] pi(true) = [] pi(nil) = [] pi(from) = [] The next rules are strictly ordered: p14 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p2: active#(if(false(),X,Y)) -> mark#(Y) p3: mark#(and(X1,X2)) -> mark#(X1) p4: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p5: active#(add(|0|(),X)) -> mark#(X) p6: mark#(if(X1,X2,X3)) -> mark#(X1) p7: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p8: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p9: mark#(add(X1,X2)) -> mark#(X1) p10: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p11: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p12: mark#(first(X1,X2)) -> mark#(X1) p13: mark#(first(X1,X2)) -> mark#(X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p2: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p3: mark#(first(X1,X2)) -> mark#(X2) p4: mark#(first(X1,X2)) -> mark#(X1) p5: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p6: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p7: mark#(add(X1,X2)) -> mark#(X1) p8: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p9: active#(add(|0|(),X)) -> mark#(X) p10: mark#(if(X1,X2,X3)) -> mark#(X1) p11: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p12: active#(if(false(),X,Y)) -> mark#(Y) p13: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 60 and_A(x1,x2) = 56 active#_A(x1) = max{8, x1} mark_A(x1) = 22 first_A(x1,x2) = 60 s_A(x1) = 60 cons_A(x1,x2) = 21 add_A(x1,x2) = 60 |0|_A = 21 if_A(x1,x2,x3) = 60 false_A = 24 active_A(x1) = max{22, x1 - 63} true_A = 54 nil_A = 1 from_A(x1) = 85 precedence: mark# = active# > and = mark = first = s = cons = add = |0| = if = false = active = true = nil = from partial status: pi(mark#) = [] pi(and) = [] pi(active#) = [] pi(mark) = [] pi(first) = [] pi(s) = [] pi(cons) = [] pi(add) = [] pi(|0|) = [] pi(if) = [] pi(false) = [] pi(active) = [] pi(true) = [] pi(nil) = [] pi(from) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p2: mark#(first(X1,X2)) -> mark#(X2) p3: mark#(first(X1,X2)) -> mark#(X1) p4: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p5: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p8: active#(add(|0|(),X)) -> mark#(X) p9: mark#(if(X1,X2,X3)) -> mark#(X1) p10: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p11: active#(if(false(),X,Y)) -> mark#(Y) p12: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p2: mark#(and(X1,X2)) -> mark#(X1) p3: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p4: active#(if(false(),X,Y)) -> mark#(Y) p5: mark#(if(X1,X2,X3)) -> mark#(X1) p6: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p7: active#(add(|0|(),X)) -> mark#(X) p8: mark#(add(X1,X2)) -> mark#(X1) p9: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p10: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p11: mark#(first(X1,X2)) -> mark#(X1) p12: mark#(first(X1,X2)) -> mark#(X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{1, x1 - 11} first_A(x1,x2) = max{x1, x2 + 27} s_A(x1) = 15 cons_A(x1,x2) = max{29, x1 + 1} mark#_A(x1) = x1 + 8 and_A(x1,x2) = max{x1 + 4, x2 + 5} if_A(x1,x2,x3) = max{x1 + 7, x2 + 14, x3 + 19} mark_A(x1) = x1 false_A = 5 add_A(x1,x2) = max{x1 + 32, x2 + 33} |0|_A = 7 active_A(x1) = max{5, x1} true_A = 5 nil_A = 6 from_A(x1) = max{52, x1 + 36} precedence: active# = first = cons > s = and = if = false = add > mark# = mark = |0| = active = true = nil = from partial status: pi(active#) = [] pi(first) = [] pi(s) = [] pi(cons) = [] pi(mark#) = [] pi(and) = [] pi(if) = [2] pi(mark) = [1] pi(false) = [] pi(add) = [2] pi(|0|) = [] pi(active) = [1] pi(true) = [] pi(nil) = [] pi(from) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) p2: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p3: active#(if(false(),X,Y)) -> mark#(Y) p4: mark#(if(X1,X2,X3)) -> mark#(X1) p5: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p6: active#(add(|0|(),X)) -> mark#(X) p7: mark#(add(X1,X2)) -> mark#(X1) p8: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p9: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p10: mark#(first(X1,X2)) -> mark#(X1) p11: mark#(first(X1,X2)) -> mark#(X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) p2: mark#(first(X1,X2)) -> mark#(X2) p3: mark#(first(X1,X2)) -> mark#(X1) p4: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p5: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p8: active#(add(|0|(),X)) -> mark#(X) p9: mark#(if(X1,X2,X3)) -> mark#(X1) p10: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p11: active#(if(false(),X,Y)) -> mark#(Y) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 and_A(x1,x2) = max{x1 + 3, x2 + 3} first_A(x1,x2) = max{x1 + 3, x2 + 4} active#_A(x1) = x1 mark_A(x1) = x1 add_A(x1,x2) = max{x1, x2} s_A(x1) = x1 |0|_A = 2 if_A(x1,x2,x3) = max{x1 + 1, x2 + 2, x3 + 2} false_A = 1 active_A(x1) = x1 true_A = 1 nil_A = 1 cons_A(x1,x2) = x2 from_A(x1) = max{3, x1 + 2} precedence: mark# = and = first = active# = mark = add = s = |0| = if = false = active = true = nil = cons = from partial status: pi(mark#) = [] pi(and) = [] pi(first) = [] pi(active#) = [] pi(mark) = [1] pi(add) = [2] pi(s) = [] pi(|0|) = [] pi(if) = [] pi(false) = [] pi(active) = [1] pi(true) = [] pi(nil) = [] pi(cons) = [] pi(from) = [1] The next rules are strictly ordered: p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) p2: mark#(first(X1,X2)) -> mark#(X2) p3: mark#(first(X1,X2)) -> mark#(X1) p4: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p5: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p6: mark#(add(X1,X2)) -> mark#(X1) p7: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p8: active#(add(|0|(),X)) -> mark#(X) p9: mark#(if(X1,X2,X3)) -> mark#(X1) p10: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) p2: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p3: active#(add(|0|(),X)) -> mark#(X) p4: mark#(if(X1,X2,X3)) -> mark#(X1) p5: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p6: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p7: mark#(add(X1,X2)) -> mark#(X1) p8: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p9: mark#(first(X1,X2)) -> mark#(X1) p10: mark#(first(X1,X2)) -> mark#(X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 18 and_A(x1,x2) = 21 if_A(x1,x2,x3) = 21 active#_A(x1) = max{17, x1 - 3} mark_A(x1) = 25 add_A(x1,x2) = 21 |0|_A = 21 s_A(x1) = 20 first_A(x1,x2) = 20 active_A(x1) = max{25, x1 + 4} true_A = 21 false_A = 1 nil_A = 1 cons_A(x1,x2) = 21 from_A(x1) = 1 precedence: cons > from > and = if > mark# = active# > mark = add = |0| = s = first = active = true = false = nil partial status: pi(mark#) = [] pi(and) = [] pi(if) = [] pi(active#) = [] pi(mark) = [] pi(add) = [] pi(|0|) = [] pi(s) = [] pi(first) = [] pi(active) = [] pi(true) = [] pi(false) = [] pi(nil) = [] pi(cons) = [] pi(from) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) p2: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p3: active#(add(|0|(),X)) -> mark#(X) p4: mark#(if(X1,X2,X3)) -> mark#(X1) p5: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p6: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p7: mark#(add(X1,X2)) -> mark#(X1) p8: mark#(first(X1,X2)) -> mark#(X1) p9: mark#(first(X1,X2)) -> mark#(X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) p2: mark#(first(X1,X2)) -> mark#(X2) p3: mark#(first(X1,X2)) -> mark#(X1) p4: mark#(add(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p6: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p7: mark#(if(X1,X2,X3)) -> mark#(X1) p8: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p9: active#(add(|0|(),X)) -> mark#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{0, x1 - 9} and_A(x1,x2) = max{x1, x2 + 42} first_A(x1,x2) = max{123, x1 + 2, x2 + 43} add_A(x1,x2) = max{x1 + 28, x2 + 70} active#_A(x1) = max{18, x1 - 35} mark_A(x1) = max{42, x1} s_A(x1) = 39 if_A(x1,x2,x3) = max{x1, x2 + 52, x3} |0|_A = 45 active_A(x1) = max{37, x1} true_A = 43 false_A = 43 nil_A = 44 cons_A(x1,x2) = 36 from_A(x1) = x1 + 42 precedence: mark# > and = first = add = active# = mark = s = if = |0| = active = true = false = nil = cons = from partial status: pi(mark#) = [] pi(and) = [] pi(first) = [] pi(add) = [] pi(active#) = [] pi(mark) = [1] pi(s) = [] pi(if) = [3] pi(|0|) = [] pi(active) = [1] pi(true) = [] pi(false) = [] pi(nil) = [] pi(cons) = [] pi(from) = [1] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) p2: mark#(first(X1,X2)) -> mark#(X2) p3: mark#(first(X1,X2)) -> mark#(X1) p4: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p5: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p6: mark#(if(X1,X2,X3)) -> mark#(X1) p7: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p8: active#(add(|0|(),X)) -> mark#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) p2: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p3: active#(add(|0|(),X)) -> mark#(X) p4: mark#(if(X1,X2,X3)) -> mark#(X1) p5: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p6: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p7: mark#(first(X1,X2)) -> mark#(X1) p8: mark#(first(X1,X2)) -> mark#(X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 and_A(x1,x2) = max{x1 + 5, x2 + 21} if_A(x1,x2,x3) = max{x1 + 14, x2 + 18, x3 + 18} active#_A(x1) = max{10, x1 - 8} mark_A(x1) = max{12, x1 + 8} add_A(x1,x2) = max{x1 + 8, x2 + 12} |0|_A = 4 s_A(x1) = 9 first_A(x1,x2) = max{25, x1 + 21, x2 + 8} active_A(x1) = max{12, x1} true_A = 11 false_A = 13 nil_A = 13 cons_A(x1,x2) = max{4, x1 - 8} from_A(x1) = x1 precedence: if > mark# = active# > and = mark = add = |0| = s = first = active = true = false = nil = cons = from partial status: pi(mark#) = [1] pi(and) = [] pi(if) = [] pi(active#) = [] pi(mark) = [] pi(add) = [] pi(|0|) = [] pi(s) = [] pi(first) = [] pi(active) = [] pi(true) = [] pi(false) = [] pi(nil) = [] pi(cons) = [] pi(from) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p2: active#(add(|0|(),X)) -> mark#(X) p3: mark#(if(X1,X2,X3)) -> mark#(X1) p4: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p5: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p6: mark#(first(X1,X2)) -> mark#(X1) p7: mark#(first(X1,X2)) -> mark#(X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p2: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p3: mark#(first(X1,X2)) -> mark#(X2) p4: mark#(first(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p6: active#(add(|0|(),X)) -> mark#(X) p7: mark#(if(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{13, x1} if_A(x1,x2,x3) = max{x1 + 7, x2 + 15, x3 + 15} active#_A(x1) = max{6, x1} mark_A(x1) = x1 add_A(x1,x2) = max{x1 + 14, x2 + 17} s_A(x1) = max{5, x1} first_A(x1,x2) = max{15, x1 + 7, x2 + 12} |0|_A = 4 active_A(x1) = max{2, x1} and_A(x1,x2) = x2 + 3 true_A = 3 false_A = 3 nil_A = 3 cons_A(x1,x2) = 2 from_A(x1) = x1 + 5 precedence: add = nil = cons = from > mark# = if = active# > and = true > false > mark > s = first = |0| = active partial status: pi(mark#) = [1] pi(if) = [3] pi(active#) = [1] pi(mark) = [1] pi(add) = [] pi(s) = [] pi(first) = [1, 2] pi(|0|) = [] pi(active) = [1] pi(and) = [] pi(true) = [] pi(false) = [] pi(nil) = [] pi(cons) = [] pi(from) = [1] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p2: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p3: mark#(first(X1,X2)) -> mark#(X2) p4: mark#(first(X1,X2)) -> mark#(X1) p5: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p6: mark#(if(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p2: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p3: mark#(if(X1,X2,X3)) -> mark#(X1) p4: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p5: mark#(first(X1,X2)) -> mark#(X1) p6: mark#(first(X1,X2)) -> mark#(X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = 5 if_A(x1,x2,x3) = 71 active#_A(x1) = max{4, x1 - 76} mark_A(x1) = 79 add_A(x1,x2) = 81 s_A(x1) = 8 first_A(x1,x2) = 80 active_A(x1) = max{79, x1 - 2} and_A(x1,x2) = 71 true_A = 21 false_A = 81 |0|_A = 33 nil_A = 79 cons_A(x1,x2) = 13 from_A(x1) = 81 precedence: mark# = if = active# = mark = add = s = first = active = and = true = false = |0| = nil = cons = from partial status: pi(mark#) = [] pi(if) = [] pi(active#) = [] pi(mark) = [] pi(add) = [] pi(s) = [] pi(first) = [] pi(active) = [] pi(and) = [] pi(true) = [] pi(false) = [] pi(|0|) = [] pi(nil) = [] pi(cons) = [] pi(from) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p2: mark#(if(X1,X2,X3)) -> mark#(X1) p3: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p4: mark#(first(X1,X2)) -> mark#(X1) p5: mark#(first(X1,X2)) -> mark#(X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p2: mark#(first(X1,X2)) -> mark#(X2) p3: mark#(first(X1,X2)) -> mark#(X1) p4: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p5: mark#(if(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{1, x1} add_A(x1,x2) = max{x1 + 10, x2 + 10} s_A(x1) = max{6, x1 - 3} mark#_A(x1) = x1 first_A(x1,x2) = max{x1 + 5, x2 + 4} mark_A(x1) = x1 if_A(x1,x2,x3) = max{x1 + 1, x2 + 3, x3 + 3} active_A(x1) = x1 and_A(x1,x2) = x2 + 2 true_A = 1 false_A = 1 |0|_A = 0 nil_A = 1 cons_A(x1,x2) = x1 + 4 from_A(x1) = max{6, x1 + 4} precedence: true = nil > from > and = false = |0| = cons > active# = add > s = mark = if > mark# = active > first partial status: pi(active#) = [] pi(add) = [] pi(s) = [] pi(mark#) = [1] pi(first) = [2] pi(mark) = [1] pi(if) = [2, 3] pi(active) = [1] pi(and) = [2] pi(true) = [] pi(false) = [] pi(|0|) = [] pi(nil) = [] pi(cons) = [] pi(from) = [] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p2: mark#(first(X1,X2)) -> mark#(X2) p3: mark#(first(X1,X2)) -> mark#(X1) p4: mark#(if(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X2) p2: mark#(if(X1,X2,X3)) -> mark#(X1) p3: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{5, x1 + 2} first_A(x1,x2) = max{x1 + 1, x2 + 3} if_A(x1,x2,x3) = max{x1 + 5, x2 + 4, x3 + 5} precedence: mark# = first = if partial status: pi(mark#) = [] pi(first) = [2] pi(if) = [3] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X2) p2: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X2) p2: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 3 first_A(x1,x2) = max{x1, x2 + 1} precedence: mark# = first partial status: pi(mark#) = [] pi(first) = [2] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(first(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 2 first_A(x1,x2) = max{x1 + 1, x2 + 1} precedence: mark# = first partial status: pi(mark#) = [] pi(first) = [2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = max{3, x1 + 2} mark_A(x1) = x1 active_A(x1) = x1 + 1 precedence: s# = mark = active partial status: pi(s#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: s# = active partial status: pi(s#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(X1,active(X2)) -> add#(X1,X2) p3: add#(active(X1),X2) -> add#(X1,X2) p4: add#(X1,mark(X2)) -> add#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: add#_A(x1,x2) = max{0, x2 - 2} mark_A(x1) = x1 active_A(x1) = max{3, x1 + 1} precedence: add# = mark = active partial status: pi(add#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(active(X1),X2) -> add#(X1,X2) p3: add#(X1,mark(X2)) -> add#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(X1,mark(X2)) -> add#(X1,X2) p3: add#(active(X1),X2) -> add#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: add#_A(x1,x2) = max{0, x1 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: add# = mark = active partial status: pi(add#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: add#(X1,mark(X2)) -> add#(X1,X2) p2: add#(active(X1),X2) -> add#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(X1,mark(X2)) -> add#(X1,X2) p2: add#(active(X1),X2) -> add#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: add#_A(x1,x2) = x2 + 1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 precedence: add# = mark = active partial status: pi(add#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: add#(active(X1),X2) -> add#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(active(X1),X2) -> add#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: add#_A(x1,x2) = max{1, x1, x2} active_A(x1) = x1 + 1 precedence: add# = active partial status: pi(add#) = [1, 2] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) p4: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{0, x2 - 2} mark_A(x1) = x1 active_A(x1) = max{3, x1 + 1} precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) p3: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,mark(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{0, x1 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = x2 + 1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{1, x1, x2} active_A(x1) = x1 + 1 precedence: cons# = active partial status: pi(cons#) = [1, 2] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) p2: first#(X1,active(X2)) -> first#(X1,X2) p3: first#(active(X1),X2) -> first#(X1,X2) p4: first#(X1,mark(X2)) -> first#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: first#_A(x1,x2) = max{0, x2 - 2} mark_A(x1) = x1 active_A(x1) = max{3, x1 + 1} precedence: first# = mark = active partial status: pi(first#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) p2: first#(active(X1),X2) -> first#(X1,X2) p3: first#(X1,mark(X2)) -> first#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) p2: first#(X1,mark(X2)) -> first#(X1,X2) p3: first#(active(X1),X2) -> first#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: first#_A(x1,x2) = max{0, x1 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: first# = mark = active partial status: pi(first#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(X1,mark(X2)) -> first#(X1,X2) p2: first#(active(X1),X2) -> first#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(X1,mark(X2)) -> first#(X1,X2) p2: first#(active(X1),X2) -> first#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: first#_A(x1,x2) = x2 + 1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 precedence: first# = mark = active partial status: pi(first#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(active(X1),X2) -> first#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(active(X1),X2) -> first#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: first#_A(x1,x2) = max{1, x1, x2} active_A(x1) = x1 + 1 precedence: first# = active partial status: pi(first#) = [1, 2] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: from#(mark(X)) -> from#(X) p2: from#(active(X)) -> from#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: from#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: from# = mark = active partial status: pi(from#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: from#(active(X)) -> from#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: from#(active(X)) -> from#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: from#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: from# = active partial status: pi(from#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(mark(X1),X2) -> and#(X1,X2) p2: and#(X1,active(X2)) -> and#(X1,X2) p3: and#(active(X1),X2) -> and#(X1,X2) p4: and#(X1,mark(X2)) -> and#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: and#_A(x1,x2) = max{0, x2 - 2} mark_A(x1) = x1 active_A(x1) = max{3, x1 + 1} precedence: and# = mark = active partial status: pi(and#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: and#(mark(X1),X2) -> and#(X1,X2) p2: and#(active(X1),X2) -> and#(X1,X2) p3: and#(X1,mark(X2)) -> and#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(mark(X1),X2) -> and#(X1,X2) p2: and#(X1,mark(X2)) -> and#(X1,X2) p3: and#(active(X1),X2) -> and#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: and#_A(x1,x2) = max{0, x1 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: and# = mark = active partial status: pi(and#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: and#(X1,mark(X2)) -> and#(X1,X2) p2: and#(active(X1),X2) -> and#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(X1,mark(X2)) -> and#(X1,X2) p2: and#(active(X1),X2) -> and#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: and#_A(x1,x2) = x2 + 1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 precedence: and# = mark = active partial status: pi(and#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: and#(active(X1),X2) -> and#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(active(X1),X2) -> and#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: and#_A(x1,x2) = max{1, x1, x2} active_A(x1) = x1 + 1 precedence: and# = active partial status: pi(and#) = [1, 2] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p3: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p4: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p5: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p6: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{x1 - 1, x2 - 1, x3 + 1} mark_A(x1) = x1 active_A(x1) = x1 precedence: if# = mark = active partial status: pi(if#) = [3] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p3: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p4: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p5: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) p3: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p4: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p5: if#(X1,active(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{0, x2 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: if# = mark = active partial status: pi(if#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p3: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p4: if#(X1,active(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p3: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p4: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{x1 - 1, x2 - 1, x3 + 1} mark_A(x1) = x1 active_A(x1) = x1 precedence: if# = mark = active partial status: pi(if#) = [3] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p3: if#(active(X1),X2,X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p3: if#(X1,active(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{x1 - 1, x2 + 1, x3 + 1} mark_A(x1) = x1 active_A(x1) = x1 precedence: if# = mark = active partial status: pi(if#) = [2] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(active(X1),X2,X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(active(X1),X2,X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{x1, x3 + 1} mark_A(x1) = x1 + 2 active_A(x1) = x1 + 1 precedence: if# = mark = active partial status: pi(if#) = [1] pi(mark) = [] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(active(X1),X2,X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(active(X1),X2,X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: if#_A(x1,x2,x3) = max{x1 + 1, x2 + 1, x3 + 1} active_A(x1) = x1 precedence: if# = active partial status: pi(if#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.