YES We show the termination of the TRS R: active(eq(|0|(),|0|())) -> mark(true()) active(eq(s(X),s(Y))) -> mark(eq(X,Y)) active(eq(X,Y)) -> mark(false()) active(inf(X)) -> mark(cons(X,inf(s(X)))) active(take(|0|(),X)) -> mark(nil()) active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) active(length(nil())) -> mark(|0|()) active(length(cons(X,L))) -> mark(s(length(L))) mark(eq(X1,X2)) -> active(eq(X1,X2)) mark(|0|()) -> active(|0|()) mark(true()) -> active(true()) mark(s(X)) -> active(s(X)) mark(false()) -> active(false()) mark(inf(X)) -> active(inf(mark(X))) mark(cons(X1,X2)) -> active(cons(X1,X2)) mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) mark(nil()) -> active(nil()) mark(length(X)) -> active(length(mark(X))) eq(mark(X1),X2) -> eq(X1,X2) eq(X1,mark(X2)) -> eq(X1,X2) eq(active(X1),X2) -> eq(X1,X2) eq(X1,active(X2)) -> eq(X1,X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) inf(mark(X)) -> inf(X) inf(active(X)) -> inf(X) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) take(mark(X1),X2) -> take(X1,X2) take(X1,mark(X2)) -> take(X1,X2) take(active(X1),X2) -> take(X1,X2) take(X1,active(X2)) -> take(X1,X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(eq(|0|(),|0|())) -> mark#(true()) p2: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p3: active#(eq(s(X),s(Y))) -> eq#(X,Y) p4: active#(eq(X,Y)) -> mark#(false()) p5: active#(inf(X)) -> mark#(cons(X,inf(s(X)))) p6: active#(inf(X)) -> cons#(X,inf(s(X))) p7: active#(inf(X)) -> inf#(s(X)) p8: active#(inf(X)) -> s#(X) p9: active#(take(|0|(),X)) -> mark#(nil()) p10: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p11: active#(take(s(X),cons(Y,L))) -> cons#(Y,take(X,L)) p12: active#(take(s(X),cons(Y,L))) -> take#(X,L) p13: active#(length(nil())) -> mark#(|0|()) p14: active#(length(cons(X,L))) -> mark#(s(length(L))) p15: active#(length(cons(X,L))) -> s#(length(L)) p16: active#(length(cons(X,L))) -> length#(L) p17: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p18: mark#(|0|()) -> active#(|0|()) p19: mark#(true()) -> active#(true()) p20: mark#(s(X)) -> active#(s(X)) p21: mark#(false()) -> active#(false()) p22: mark#(inf(X)) -> active#(inf(mark(X))) p23: mark#(inf(X)) -> inf#(mark(X)) p24: mark#(inf(X)) -> mark#(X) p25: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p26: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p27: mark#(take(X1,X2)) -> take#(mark(X1),mark(X2)) p28: mark#(take(X1,X2)) -> mark#(X1) p29: mark#(take(X1,X2)) -> mark#(X2) p30: mark#(nil()) -> active#(nil()) p31: mark#(length(X)) -> active#(length(mark(X))) p32: mark#(length(X)) -> length#(mark(X)) p33: mark#(length(X)) -> mark#(X) p34: eq#(mark(X1),X2) -> eq#(X1,X2) p35: eq#(X1,mark(X2)) -> eq#(X1,X2) p36: eq#(active(X1),X2) -> eq#(X1,X2) p37: eq#(X1,active(X2)) -> eq#(X1,X2) p38: s#(mark(X)) -> s#(X) p39: s#(active(X)) -> s#(X) p40: inf#(mark(X)) -> inf#(X) p41: inf#(active(X)) -> inf#(X) p42: cons#(mark(X1),X2) -> cons#(X1,X2) p43: cons#(X1,mark(X2)) -> cons#(X1,X2) p44: cons#(active(X1),X2) -> cons#(X1,X2) p45: cons#(X1,active(X2)) -> cons#(X1,X2) p46: take#(mark(X1),X2) -> take#(X1,X2) p47: take#(X1,mark(X2)) -> take#(X1,X2) p48: take#(active(X1),X2) -> take#(X1,X2) p49: take#(X1,active(X2)) -> take#(X1,X2) p50: length#(mark(X)) -> length#(X) p51: length#(active(X)) -> length#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p2, p5, p10, p14, p17, p20, p22, p24, p25, p26, p28, p29, p31, p33} {p34, p35, p36, p37} {p42, p43, p44, p45} {p40, p41} {p38, p39} {p46, p47, p48, p49} {p50, p51} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(length(cons(X,L))) -> mark#(s(length(L))) p3: mark#(length(X)) -> mark#(X) p4: mark#(take(X1,X2)) -> mark#(X2) p5: mark#(take(X1,X2)) -> mark#(X1) p6: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p7: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p8: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p9: active#(inf(X)) -> mark#(cons(X,inf(s(X)))) p10: mark#(inf(X)) -> mark#(X) p11: mark#(inf(X)) -> active#(inf(mark(X))) p12: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p13: mark#(s(X)) -> active#(s(X)) p14: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{5, x1} length_A(x1) = x1 + 17 active#_A(x1) = max{1, x1} mark_A(x1) = x1 cons_A(x1,x2) = max{x1, x2 - 10} s_A(x1) = max{2, x1 - 10} take_A(x1,x2) = max{x1 + 16, x2 + 16} inf_A(x1) = x1 + 7 eq_A(x1,x2) = 17 active_A(x1) = x1 |0|_A = 7 true_A = 10 false_A = 17 nil_A = 1 precedence: take > mark# = active# = eq = true > length > |0| > mark = cons = s = inf = active = false = nil partial status: pi(mark#) = [1] pi(length) = [] pi(active#) = [1] pi(mark) = [] pi(cons) = [] pi(s) = [] pi(take) = [] pi(inf) = [] pi(eq) = [] pi(active) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(nil) = [] The next rules are strictly ordered: p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(length(cons(X,L))) -> mark#(s(length(L))) p3: mark#(length(X)) -> mark#(X) p4: mark#(take(X1,X2)) -> mark#(X2) p5: mark#(take(X1,X2)) -> mark#(X1) p6: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p7: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p8: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p9: mark#(inf(X)) -> mark#(X) p10: mark#(inf(X)) -> active#(inf(mark(X))) p11: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p12: mark#(s(X)) -> active#(s(X)) p13: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p3: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p4: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p5: mark#(s(X)) -> active#(s(X)) p6: active#(length(cons(X,L))) -> mark#(s(length(L))) p7: mark#(inf(X)) -> active#(inf(mark(X))) p8: mark#(inf(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p10: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p11: mark#(take(X1,X2)) -> mark#(X1) p12: mark#(take(X1,X2)) -> mark#(X2) p13: mark#(length(X)) -> mark#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{1, x1 - 16} length_A(x1) = max{136, x1 + 72} active#_A(x1) = max{11, x1 - 16} mark_A(x1) = max{30, x1} eq_A(x1,x2) = 29 s_A(x1) = max{27, x1 - 54} take_A(x1,x2) = max{143, x1 + 98, x2 + 113} cons_A(x1,x2) = max{27, x1 - 7, x2 - 54} inf_A(x1) = max{83, x1 + 28} active_A(x1) = max{30, x1} |0|_A = 137 true_A = 28 false_A = 28 nil_A = 113 precedence: length > mark# = active# = mark = eq = s = take = cons = inf = active = |0| = true = false = nil partial status: pi(mark#) = [] pi(length) = [] pi(active#) = [] pi(mark) = [1] pi(eq) = [] pi(s) = [] pi(take) = [] pi(cons) = [] pi(inf) = [] pi(active) = [1] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(nil) = [] The next rules are strictly ordered: p13 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p3: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p4: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p5: mark#(s(X)) -> active#(s(X)) p6: active#(length(cons(X,L))) -> mark#(s(length(L))) p7: mark#(inf(X)) -> active#(inf(mark(X))) p8: mark#(inf(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p10: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p11: mark#(take(X1,X2)) -> mark#(X1) p12: mark#(take(X1,X2)) -> mark#(X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(length(cons(X,L))) -> mark#(s(length(L))) p3: mark#(take(X1,X2)) -> mark#(X2) p4: mark#(take(X1,X2)) -> mark#(X1) p5: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p6: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p7: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p8: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p9: mark#(inf(X)) -> mark#(X) p10: mark#(inf(X)) -> active#(inf(mark(X))) p11: mark#(s(X)) -> active#(s(X)) p12: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{1, x1 - 5} length_A(x1) = max{59, x1 + 33} active#_A(x1) = max{12, x1 - 15} mark_A(x1) = max{23, x1 + 7} cons_A(x1,x2) = x1 + 60 s_A(x1) = 18 take_A(x1,x2) = max{66, x1 + 44, x2 + 29} eq_A(x1,x2) = 17 inf_A(x1) = max{92, x1 + 68} active_A(x1) = max{24, x1} |0|_A = 61 true_A = 17 false_A = 17 nil_A = 67 precedence: mark# = active# = mark = eq = active = true > length = nil > false > cons = take > s > inf = |0| partial status: pi(mark#) = [] pi(length) = [1] pi(active#) = [] pi(mark) = [] pi(cons) = [] pi(s) = [] pi(take) = [1] pi(eq) = [] pi(inf) = [] pi(active) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(nil) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(length(cons(X,L))) -> mark#(s(length(L))) p3: mark#(take(X1,X2)) -> mark#(X2) p4: mark#(take(X1,X2)) -> mark#(X1) p5: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p6: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p7: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p8: mark#(inf(X)) -> mark#(X) p9: mark#(inf(X)) -> active#(inf(mark(X))) p10: mark#(s(X)) -> active#(s(X)) p11: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p3: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p4: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p5: mark#(s(X)) -> active#(s(X)) p6: active#(length(cons(X,L))) -> mark#(s(length(L))) p7: mark#(inf(X)) -> active#(inf(mark(X))) p8: mark#(inf(X)) -> mark#(X) p9: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p10: mark#(take(X1,X2)) -> mark#(X1) p11: mark#(take(X1,X2)) -> mark#(X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{0, x1 - 19} length_A(x1) = max{120, x1 + 71} active#_A(x1) = max{17, x1 - 35} mark_A(x1) = max{50, x1 + 14} eq_A(x1,x2) = 36 s_A(x1) = 98 take_A(x1,x2) = max{122, x1 + 86, x2 + 70} cons_A(x1,x2) = x1 + 111 inf_A(x1) = max{161, x1 + 125} active_A(x1) = max{50, x1} |0|_A = 121 true_A = 21 false_A = 5 nil_A = 123 precedence: length > mark# = active# > mark = eq = s = take = cons = inf = active = |0| = true = false = nil partial status: pi(mark#) = [] pi(length) = [] pi(active#) = [] pi(mark) = [] pi(eq) = [] pi(s) = [] pi(take) = [] pi(cons) = [] pi(inf) = [] pi(active) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(nil) = [] The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p3: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p4: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p5: mark#(s(X)) -> active#(s(X)) p6: active#(length(cons(X,L))) -> mark#(s(length(L))) p7: mark#(inf(X)) -> active#(inf(mark(X))) p8: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p9: mark#(take(X1,X2)) -> mark#(X1) p10: mark#(take(X1,X2)) -> mark#(X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(length(cons(X,L))) -> mark#(s(length(L))) p3: mark#(take(X1,X2)) -> mark#(X2) p4: mark#(take(X1,X2)) -> mark#(X1) p5: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p6: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p7: mark#(inf(X)) -> active#(inf(mark(X))) p8: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p9: mark#(s(X)) -> active#(s(X)) p10: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{18, x1} length_A(x1) = max{16, x1 - 9} active#_A(x1) = max{17, x1} mark_A(x1) = x1 cons_A(x1,x2) = max{62, x1 + 51} s_A(x1) = 15 take_A(x1,x2) = max{x1 + 16, x2 + 19} inf_A(x1) = max{63, x1 + 61} eq_A(x1,x2) = 19 active_A(x1) = max{1, x1} |0|_A = 11 true_A = 18 false_A = 2 nil_A = 10 precedence: mark# = length = active# = mark = cons = s = take = inf = eq = active = |0| = true = false = nil partial status: pi(mark#) = [1] pi(length) = [] pi(active#) = [1] pi(mark) = [1] pi(cons) = [] pi(s) = [] pi(take) = [] pi(inf) = [] pi(eq) = [] pi(active) = [1] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(nil) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: mark#(take(X1,X2)) -> mark#(X2) p3: mark#(take(X1,X2)) -> mark#(X1) p4: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p5: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p6: mark#(inf(X)) -> active#(inf(mark(X))) p7: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p8: mark#(s(X)) -> active#(s(X)) p9: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p3: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p4: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p5: mark#(s(X)) -> active#(s(X)) p6: mark#(inf(X)) -> active#(inf(mark(X))) p7: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p8: mark#(take(X1,X2)) -> mark#(X1) p9: mark#(take(X1,X2)) -> mark#(X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = x1 + 22 length_A(x1) = 31 active#_A(x1) = max{22, x1 + 7} mark_A(x1) = x1 + 2 eq_A(x1,x2) = 0 s_A(x1) = max{20, x1 - 2} take_A(x1,x2) = max{x1, x2 + 22} cons_A(x1,x2) = x1 + 20 inf_A(x1) = x1 + 22 active_A(x1) = max{2, x1} |0|_A = 28 true_A = 0 false_A = 0 nil_A = 1 precedence: mark# = length = active# = mark = s = inf = active = |0| = true = false = nil > eq = take = cons partial status: pi(mark#) = [] pi(length) = [] pi(active#) = [] pi(mark) = [] pi(eq) = [] pi(s) = [] pi(take) = [2] pi(cons) = [] pi(inf) = [] pi(active) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(nil) = [] The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p3: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p4: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p5: mark#(s(X)) -> active#(s(X)) p6: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p7: mark#(take(X1,X2)) -> mark#(X1) p8: mark#(take(X1,X2)) -> mark#(X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p3: mark#(take(X1,X2)) -> mark#(X2) p4: mark#(take(X1,X2)) -> mark#(X1) p5: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p6: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p7: mark#(s(X)) -> active#(s(X)) p8: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{38, x1 + 24} length_A(x1) = x1 + 3 active#_A(x1) = x1 + 24 mark_A(x1) = x1 take_A(x1,x2) = max{x1 + 19, x2 + 19} s_A(x1) = 13 cons_A(x1,x2) = x1 + 10 eq_A(x1,x2) = 19 active_A(x1) = x1 |0|_A = 0 true_A = 18 false_A = 0 inf_A(x1) = max{28, x1 + 14} nil_A = 18 precedence: length = mark = active = true = false = inf = nil > mark# = active# > take = s = cons = eq = |0| partial status: pi(mark#) = [] pi(length) = [] pi(active#) = [] pi(mark) = [] pi(take) = [2] pi(s) = [] pi(cons) = [1] pi(eq) = [] pi(active) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(inf) = [] pi(nil) = [] The next rules are strictly ordered: p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p3: mark#(take(X1,X2)) -> mark#(X2) p4: mark#(take(X1,X2)) -> mark#(X1) p5: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p6: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p7: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p3: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p4: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p5: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p6: mark#(take(X1,X2)) -> mark#(X1) p7: mark#(take(X1,X2)) -> mark#(X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: mark#_A(x1) = max{46, x1 - 70} length_A(x1) = x1 + 124 active#_A(x1) = 46 mark_A(x1) = x1 + 7 eq_A(x1,x2) = 0 s_A(x1) = 0 take_A(x1,x2) = max{x1 + 71, x2 + 77} cons_A(x1,x2) = 47 active_A(x1) = max{7, x1} |0|_A = 0 true_A = 0 false_A = 0 inf_A(x1) = 54 nil_A = 0 precedence: mark# = length = active# = take = cons = |0| > mark = active = nil > eq = true > s = false = inf partial status: pi(mark#) = [] pi(length) = [] pi(active#) = [] pi(mark) = [] pi(eq) = [] pi(s) = [] pi(take) = [] pi(cons) = [] pi(active) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(inf) = [] pi(nil) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p2: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p3: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p4: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p5: mark#(take(X1,X2)) -> mark#(X1) p6: mark#(take(X1,X2)) -> mark#(X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p2: mark#(take(X1,X2)) -> mark#(X2) p3: mark#(take(X1,X2)) -> mark#(X1) p4: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p5: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p6: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{4, x1 - 49} eq_A(x1,x2) = 31 s_A(x1) = 20 mark#_A(x1) = max{4, x1 - 27} take_A(x1,x2) = max{81, x1 + 69, x2 + 75} mark_A(x1) = max{5, x1} cons_A(x1,x2) = x1 + 19 active_A(x1) = max{3, x1} |0|_A = 9 true_A = 4 false_A = 6 inf_A(x1) = max{42, x1 + 21} nil_A = 4 length_A(x1) = max{21, x1 + 4} precedence: active# = eq = s = mark# = take = mark = cons = active = |0| = true = false = inf = nil = length partial status: pi(active#) = [] pi(eq) = [] pi(s) = [] pi(mark#) = [] pi(take) = [] pi(mark) = [1] pi(cons) = [1] pi(active) = [1] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(inf) = [] pi(nil) = [] pi(length) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p2: mark#(take(X1,X2)) -> mark#(X2) p3: mark#(take(X1,X2)) -> mark#(X1) p4: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p5: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p2: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p3: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p4: mark#(take(X1,X2)) -> mark#(X1) p5: mark#(take(X1,X2)) -> mark#(X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{21, x1 - 19} eq_A(x1,x2) = 21 s_A(x1) = 5 mark#_A(x1) = max{1, x1} take_A(x1,x2) = max{78, x1 + 31, x2 + 54} mark_A(x1) = max{30, x1 + 6} active_A(x1) = max{30, x1} |0|_A = 25 true_A = 20 false_A = 14 inf_A(x1) = max{28, x1 - 1} cons_A(x1,x2) = 24 nil_A = 31 length_A(x1) = max{18, x1} precedence: eq = mark = active > s > active# = mark# = take = true > inf = cons > |0| = nil > false = length partial status: pi(active#) = [] pi(eq) = [] pi(s) = [] pi(mark#) = [] pi(take) = [2] pi(mark) = [] pi(active) = [] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(inf) = [] pi(cons) = [] pi(nil) = [] pi(length) = [] The next rules are strictly ordered: p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p2: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p3: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p4: mark#(take(X1,X2)) -> mark#(X1) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p2: mark#(take(X1,X2)) -> mark#(X1) p3: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p4: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{91, x1 + 27} eq_A(x1,x2) = 5 s_A(x1) = 14 mark#_A(x1) = max{91, x1 + 59} take_A(x1,x2) = max{x1 + 6, x2 + 6} mark_A(x1) = x1 active_A(x1) = max{3, x1} |0|_A = 35 true_A = 4 false_A = 3 inf_A(x1) = x1 + 9 cons_A(x1,x2) = 8 nil_A = 5 length_A(x1) = x1 + 35 precedence: active# = eq = s = mark# = take = mark = active = |0| = true = false = inf = cons = nil = length partial status: pi(active#) = [1] pi(eq) = [] pi(s) = [] pi(mark#) = [1] pi(take) = [] pi(mark) = [1] pi(active) = [1] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(inf) = [] pi(cons) = [] pi(nil) = [] pi(length) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p2: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p3: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p2: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p3: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{66, x1 + 31} eq_A(x1,x2) = 16 s_A(x1) = max{9, x1 - 10} mark#_A(x1) = x1 + 50 take_A(x1,x2) = max{x1 + 20, x2 + 19} mark_A(x1) = x1 active_A(x1) = max{3, x1} |0|_A = 14 true_A = 15 false_A = 4 inf_A(x1) = max{4, x1 + 2} cons_A(x1,x2) = max{4, x1 + 2, x2 - 10} nil_A = 4 length_A(x1) = 15 precedence: s > active# = eq = mark# = take = mark = active = |0| = true = false = inf = cons = nil = length partial status: pi(active#) = [] pi(eq) = [] pi(s) = [] pi(mark#) = [] pi(take) = [] pi(mark) = [1] pi(active) = [1] pi(|0|) = [] pi(true) = [] pi(false) = [] pi(inf) = [] pi(cons) = [] pi(nil) = [] pi(length) = [] The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p2: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p2: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r19, r20, r21, r22 Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: active#_A(x1) = max{1, x1} eq_A(x1,x2) = max{3, x1 - 3, x2 - 6} s_A(x1) = max{12, x1 + 10} mark#_A(x1) = x1 + 5 mark_A(x1) = x1 active_A(x1) = x1 precedence: active# = eq = s = mark# = mark = active partial status: pi(active#) = [1] pi(eq) = [] pi(s) = [1] pi(mark#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(mark(X1),X2) -> eq#(X1,X2) p2: eq#(X1,active(X2)) -> eq#(X1,X2) p3: eq#(active(X1),X2) -> eq#(X1,X2) p4: eq#(X1,mark(X2)) -> eq#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{0, x2 - 2} mark_A(x1) = x1 active_A(x1) = max{3, x1 + 1} precedence: eq# = mark = active partial status: pi(eq#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(mark(X1),X2) -> eq#(X1,X2) p2: eq#(active(X1),X2) -> eq#(X1,X2) p3: eq#(X1,mark(X2)) -> eq#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(mark(X1),X2) -> eq#(X1,X2) p2: eq#(X1,mark(X2)) -> eq#(X1,X2) p3: eq#(active(X1),X2) -> eq#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{0, x1 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: eq# = mark = active partial status: pi(eq#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(X1,mark(X2)) -> eq#(X1,X2) p2: eq#(active(X1),X2) -> eq#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(X1,mark(X2)) -> eq#(X1,X2) p2: eq#(active(X1),X2) -> eq#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = x2 + 1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 precedence: eq# = mark = active partial status: pi(eq#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(active(X1),X2) -> eq#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(active(X1),X2) -> eq#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: eq#_A(x1,x2) = max{1, x1, x2} active_A(x1) = x1 + 1 precedence: eq# = active partial status: pi(eq#) = [1, 2] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) p4: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{0, x2 - 2} mark_A(x1) = x1 active_A(x1) = max{3, x1 + 1} precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) p3: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,mark(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{0, x1 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(X1,mark(X2)) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = x2 + 1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 precedence: cons# = mark = active partial status: pi(cons#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: cons#_A(x1,x2) = max{1, x1, x2} active_A(x1) = x1 + 1 precedence: cons# = active partial status: pi(cons#) = [1, 2] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: inf#(mark(X)) -> inf#(X) p2: inf#(active(X)) -> inf#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: inf#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: inf# = mark = active partial status: pi(inf#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: inf#(active(X)) -> inf#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: inf#(active(X)) -> inf#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: inf#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: inf# = active partial status: pi(inf#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = max{3, x1 + 2} mark_A(x1) = x1 active_A(x1) = x1 + 1 precedence: s# = mark = active partial status: pi(s#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: s#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: s# = active partial status: pi(s#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: take#(mark(X1),X2) -> take#(X1,X2) p2: take#(X1,active(X2)) -> take#(X1,X2) p3: take#(active(X1),X2) -> take#(X1,X2) p4: take#(X1,mark(X2)) -> take#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: take#_A(x1,x2) = max{0, x2 - 1} mark_A(x1) = x1 active_A(x1) = x1 + 2 precedence: take# = mark = active partial status: pi(take#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: take#(mark(X1),X2) -> take#(X1,X2) p2: take#(active(X1),X2) -> take#(X1,X2) p3: take#(X1,mark(X2)) -> take#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: take#(mark(X1),X2) -> take#(X1,X2) p2: take#(X1,mark(X2)) -> take#(X1,X2) p3: take#(active(X1),X2) -> take#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: take#_A(x1,x2) = max{0, x1 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 precedence: take# = mark = active partial status: pi(take#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: take#(X1,mark(X2)) -> take#(X1,X2) p2: take#(active(X1),X2) -> take#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: take#(X1,mark(X2)) -> take#(X1,X2) p2: take#(active(X1),X2) -> take#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: take#_A(x1,x2) = max{0, x2 - 2} mark_A(x1) = max{3, x1 + 1} active_A(x1) = x1 + 1 precedence: take# = mark = active partial status: pi(take#) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: take#(active(X1),X2) -> take#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: take#(active(X1),X2) -> take#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the reduction pair: weighted path order base order: max/plus interpretations on natural numbers: take#_A(x1,x2) = max{1, x1, x2} active_A(x1) = x1 + 1 precedence: take# = active partial status: pi(take#) = [1, 2] pi(active) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: length#(mark(X)) -> length#(X) p2: length#(active(X)) -> length#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: length#_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 precedence: length# = mark = active partial status: pi(length#) = [1] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: length#(active(X)) -> length#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: length#(active(X)) -> length#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: weighted path order base order: max/plus interpretations on natural numbers: length#_A(x1) = x1 + 1 active_A(x1) = x1 precedence: length# = active partial status: pi(length#) = [1] pi(active) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.